Menu

Blog

Page 2293

Mar 13, 2023

Quantum Geometry — The Newest “Magic” Twist in Superconductivity

Posted by in categories: materials, quantum physics

A new mechanism that gives rise to superconductivity in a material where the speed of electrons is almost zero has been discovered by scientists at The University of Texas at Dallas and their partners at The Ohio State University. This breakthrough could pave the way for the development of novel superconductors.

The results of their study, which was recently published in the journal Nature, describe a novel approach to calculate electron speed. This study also represents the first instance where quantum geometry has been recognized as the primary contributing mechanism to superconductivity in any material.

The material the researchers studied is twisted bilayer graphene.

Mar 12, 2023

Self-aware robots that rebel against human creators; not restricted to sci-fi

Posted by in category: robotics/AI

There are those who are alarmed at even this minute form of self-awareness in robots, for they fear that this could pave the way for AI taking over humankind. Such fears are unfounded, as they are a long way off from becoming self-aware enough to have self-will and volition.

The jury is still out on the extent to which we humans can claim to be self-aware, apart from being aware of one’s body and its functions. Every one of us is at a different level of self-awareness, and most of us are at the very infancy of this evolutionary journey that could one day lead to us becoming aware of not only the individual self but also of the Supreme Self, Atman.

Mar 12, 2023

Enzymes Make Electricity From Thin Air

Posted by in category: mobile phones

There’s an old magic trick known as the miser’s dream, where the magician appears to pull coins from thin air. Australian scientists say they can now generate electricity out of thin air with the help of some enzymes. The enzyme reacts to hydrogen in the atmosphere to generate a current.

They learned the trick from bacteria which are known to use hydrogen for fuel in inhospitable environments like Antarctica or in volcanic craters. Scientists knew hydrogen was involved but didn’t know how it worked until now.

The enzyme is very efficient and can even work on trace amounts of hydrogen. The enzyme can survive freezing and temperature up to 80 °C (176 °F). The paper seems more intent on the physical mechanisms involved, but you can tell the current generated is minuscule. We don’t expect to see air-powered cell phones anytime soon. Then again, you have to start somewhere, and who knows where this could lead?

Mar 12, 2023

A 3 Million-Year-Old Discovery May Rewrite the History of Intelligent Life on Earth

Posted by in category: futurism

A set of ancient stone tools may have been made by a species unrelated to modern humans, a new finding suggests.

Mar 12, 2023

Immersive Virtual Reality From The Humble Webcam

Posted by in categories: computing, information science, space, virtual reality

[Russ Maschmeyer] and Spatial Commerce Projects developed WonkaVision to demonstrate how 3D eye tracking from a single webcam can support rendering a graphical virtual reality (VR) display with realistic depth and space. Spatial Commerce Projects is a Shopify lab working to provide concepts, prototypes, and tools to explore the crossroads of spatial computing and commerce.

The graphical output provides a real sense of depth and three-dimensional space using an optical illusion that reacts to the viewer’s eye position. The eye position is used to render view-dependent images. The computer screen is made to feel like a window into a realistic 3D virtual space where objects beyond the window appear to have depth and objects before the window appear to project out into the space in front of the screen. The resulting experience is like a 3D view into a virtual space. The downside is that the experience only works for one viewer.

Eye tracking is performed using Google’s MediaPipe Iris library, which relies on the fact that the iris diameter of the human eye is almost exactly 11.7 mm for most humans. Computer vision algorithms in the library use this geometrical fact to efficiently locate and track human irises with high accuracy.

Mar 12, 2023

How Quantum Physicists ‘Flipped Time’ (and Didn’t)

Posted by in category: quantum physics

In 2022, two teams made photons act as if time were simultaneously flowing in both directions, which could point to a way to boost quantum devices.

Mar 12, 2023

Scientists claim superconductor breakthrough ‘bigger than AI’

Posted by in categories: quantum physics, robotics/AI

A world of levitating trains, quantum computers and massive energy savings may have come a little closer, after scientists claimed to have attained a long hoped-for dream of physics: room temperature superconductivity.

However, the achievement, announced in the prestigious journal Nature, came with two caveats. The first is that at present it only works at 10,000 times atmospheric pressure. The second is that the last time members of the same team announced similar findings they had to retract them amid allegations of malpractice.

Jorge Hirsch, from the University of California, San Diego, said that on the face of it the achievement was stunning. “If this is real it’s extremely impressive, groundbreaking and worthy of the Nobel prize,” he said. But, he added, “I do not.

Mar 12, 2023

Knots smaller than human hair make materials unusually tough

Posted by in categories: biotech/medical, nanotechnology

In the latest advance in nano-and micro-architected materials, engineers at Caltech have developed a new material made from numerous interconnected microscale knots.

The make the material far tougher than identically structured but unknotted materials: they absorb more energy and are able to deform more while still being able to return to their original shape undamaged. These new knotted materials may find applications in biomedicine as well as in aerospace applications due to their durability, possible biocompatibility, and extreme deformability.

Continue reading “Knots smaller than human hair make materials unusually tough” »

Mar 12, 2023

The First-Ever Complete Map of an Insect Brain Is Truly Mesmerizing

Posted by in categories: mapping, neuroscience

After 12 years of work, a huge team of researchers from the UK, US, and Germany have completed the largest and most complex brain map to date, describing every neural connection in the brain of a larval fruit fly.

Though nowhere near the size and complexity of a human brain, it still covers a respectable 548,000 connections between a total of 3,016 neurons.

Continue reading “The First-Ever Complete Map of an Insect Brain Is Truly Mesmerizing” »

Mar 12, 2023

Shape memory achieved for nano-sized objects

Posted by in categories: nanotechnology, robotics/AI

Alloys that can return to their original structure after being deformed have a so-called shape memory. This phenomenon and the resulting forces are used in many mechanical actuating systems, for example in generators or hydraulic pumps. However, it has not been possible to use this shape-memory effect at a small nanoscale. Objects made of shape-memory alloy can only change back to their original shape if they are larger than around 50 nanometers.

Researchers led by Salvador Pané, Professor of Materials of Robotics at ETH Zurich, and Xiang-Zhong Chen, a senior scientist in his group, were able to circumvent this limitation using . In a study published in the journal Nature Communications, they demonstrate the shape-memory effect on a layer that is about twenty nanometers thick and made of materials called ferroic oxides. This achievement now makes it possible to apply the shape-memory effect to tiny nanoscale machines.

At first glance, ferroic oxides do not appear to be very suitable for the shape-memory effect: They are brittle in bulk scale, and in order to produce very thin layers of them, they usually have to be fixed onto a substrate, which makes them inflexible. In order to still be able to induce the shape-memory effect, the researchers used two different oxides, and cobalt ferrite, of which they temporarily applied thin layers onto a magnesium substrate. The lattice parameters of the two oxides differ significantly from each other. After the researchers had detached the two-layered strip from the supporting substrate, the tension between the two oxides generated a spiral-shaped twisted structure.