Toggle light / dark theme

Earth will be struck today by a coronal mass ejection from a huge solar flare that erupted from the sun on New Year’s Eve.

The New Year’s Eve flare created a CME, a huge bubble of plasma from a region of the sun called the corona, which is equivalent to the sun’s outer atmosphere, and this has an Earth-directed component. Though this massive ejection of plasma will only graze the magnetic bubble surrounding our planet Tuesday (Jan. 2), the magnetosphere, it could trigger a geomagnetic storm that could affect communications and power infrastructure.

The coronal mass ejection CME was hurled into space by an X-class solar flare that burst from the surface of the sun at 4:55 p.m. EST (2155 GMT) on Sunday (Dec. 31). It is the most powerful flare that has happened on the sun during the current solar cycle, solar cycle 25, which began in Dec. 2019. In fact, the flare that ended 2023 with a bang is the largest that has been observed since Sept. 10, 2017, according to the Space Weather Prediction Center of the National Oceanic And Atmospheric Administration (NOAA).

READ MORE: Suspected cyberattack renders most gas stations in Iran out of service

The hacking of the Municipal Water Authority of Aliquippa is prompting new warnings from U.S. security officials at a time when states and the federal government are wrestling with how to harden water utilities against cyberattacks.

The danger, officials say, is hackers gaining control of automated equipment to shut down pumps that supply drinking water or contaminate drinking water by reprogramming automated chemical treatments. Besides Iran, other potentially hostile geopolitical rivals, including China, are viewed by U.S. officials as a threat.

Our memories are rich in detail: we can vividly recall the color of our home, the layout of our kitchen, or the front of our favorite café. How the brain encodes this information has long puzzled neuroscientists.

In a new Dartmouth-led study, researchers identified a neural coding mechanism that allows the transfer of information back and forth between perceptual regions to memory areas of the . The results are published in Nature Neuroscience.

Prior to this work, the classic understanding of brain organization was that perceptual regions of the brain represent the world “as it is,” with the brain’s visual cortex representing the external world based on how light falls on the retina, “retinotopically.” In contrast, it was thought that the brain’s memory areas represent information in an abstract format, stripped of details about its physical nature. However, according to the co-authors, this explanation fails to take into account that as information is encoded or recalled, these regions may in fact, share a common code in the brain.

Diets that are higher in fat and significantly lower in carbohydrates are known to have a drastic effect on reducing the incidence of seizures in individuals with drug-resistant forms of epilepsy, particularly among children.

While it’s becoming apparent the diet creates some sort of shift in the gut’s microflora, the precise nature of those changes and their connection to the prevalence of seizures remains a mystery.

In a prospective study on children and experiments involving mice, researchers from the University of California, Los Angeles (UCLA) bring us a step closer to understanding how the foods we eat alter the functions of microbes in our digestive system, which in turn affect a variety of neurological functions suspected to play a role in epilepsy.

Researchers are actively engaged in the dynamic manipulation of quantum systems and materials to realize significant energy management and conservation breakthroughs.

This endeavor has catalyzed the development of a cutting-edge platform dedicated to creating quantum thermal machines, thereby unlocking the full potential of quantum technologies in advanced energy solutions.