Toggle light / dark theme

Our lives are filled with binary decisions—choices between one of two alternatives. But what’s really happening inside our brains when we engage in this kind of decision making?

A University of Ottawa Faculty of Medicine-led study published in Nature Neuroscience sheds new light on these big questions, illuminating a general principle of neural processing in a mysterious region of the midbrain that is the very origin of our central serotonin (5-HT) system, a key part of the nervous system involved in a remarkable range of cognitive and behavioral functions.

“The current dominating model is that individual 5-HT neurons are acting independently from one another. While it had previously been suggested that 5-HT neurons may rather be connected with one another, it had not been directly demonstrated. That is what we did here. We also identify an intriguing processing role—or a computation—that is supported by this particular type of connectivity between 5-HT neurons,” says Dr. Jean-Claude Béïque, full professor in the Faculty’s Department of Cellular and Molecular Medicine and co-director of the uOttawa Brain and Mind Research Institute’s Centre for Neural Dynamics and Artificial Intelligence.

A rare cell type in the lungs is essential to survival from the COVID-19 virus, a new study shows.

Experiments in mice infected with the SARS-CoV-2 virus revealed that the immune cell class in question, called nerve and airway-associated interstitial macrophages, or NAMs, may keep the human immune system’s initial counterattack on the virus () from spiraling out of control to endanger patients.

Macrophages are known to be the first responders to infection, as large capable of devouring invading viruses and the cells they infect.

Researchers from Sun Yat-sen University (SYSU) and the Institute of High Energy Physics (IHEP) have developed a novel top veto tracker system for the Taishan Antineutrino Observatory (TAO) experiment.

This system features a top veto tracker system with remarkable characteristics such as high light yield, distinct signal-background differentiation and high detection efficiency even at high thresholds, and provides the TAO experiment with a robust capability to suppress cosmic muon induced fast neutron and radioisotope events, which are significant correlated backgrounds for the neutrino signal. This scalable solution establishes a transferable technique for next-generation neutrino detectors requiring muon identification efficiency 99.5% across multi-ton volumes.

The findings are published in the journal Nuclear Science and Techniques.

A team of scientists used the popular video game Minecraft to explore how humans combine individual instincts with social cues when learning in complex environments.

By tracking players’ actions and visual focus in a simulated foraging task, they discovered that success depends not on using just one strategy, but on being flexible, adapting between solo exploration and social observation. This novel experiment bridges a long-standing gap between traditional studies and real-world learning, revealing that human intelligence thrives on adaptability, especially in uncertain environments.

The uniquely human edge: social learning across generations.

Physicists are tapping into the strange world of quantum sensors to revolutionize particle detection in the next generation of high-energy experiments.

These new superconducting detectors not only offer sharper spatial resolution but can also track events in time—essential for decoding chaotic particle collisions. By harnessing cutting-edge quantum technologies originally developed for astronomy and networking, researchers are making huge strides toward identifying previously undetectable particles, including potential components of dark matter.

Unlocking the universe with particle colliders.

The discovery broadens the known spectrum of this rare disorder, emphasizing the critical role of collaboration with patient advocates. A newly discovered subtype of Castleman disease promises to improve diagnosis and treatment for thousands of patients who have not fit neatly into existing class

How core-mantle differentiation influenced the distribution of volatile elements on Earth. Imagine Earth’s history as a mystery novel, with one of its greatest unresolved questions being: Where did all the nitrogen go? Scientists have long observed that Earth’s rocky outer layer, the mantle, cont

In 2023, EPFL researchers succeeded in sending and storing data using charge-free magnetic waves called spin waves, rather than traditional electron flows. The team from the Lab of Nanoscale Magnetic Materials and Magnonics, led by Dirk Grundler, in the School of Engineering, used radiofrequency signals to excite spin waves enough to reverse the magnetization state of tiny nanomagnets.

When switched from 0 to 1, for example, this allows the nanomagnets to store digital information, a process used in computer memory, and more broadly, in information and communication technologies.

This work was a big step toward sustainable computing, because encoding data via (whose quasiparticles are called magnons) could eliminate the energy loss, or Joule heating, associated with electron-based devices. But at the time, the spin wave signals could not be used to reset the to overwrite existing data.