Toggle light / dark theme

In 2023, EPFL researchers succeeded in sending and storing data using charge-free magnetic waves called spin waves, rather than traditional electron flows. The team from the Lab of Nanoscale Magnetic Materials and Magnonics, led by Dirk Grundler, in the School of Engineering, used radiofrequency signals to excite spin waves enough to reverse the magnetization state of tiny nanomagnets.

When switched from 0 to 1, for example, this allows the nanomagnets to store digital information, a process used in computer memory, and more broadly, in information and communication technologies.

This work was a big step toward sustainable computing, because encoding data via (whose quasiparticles are called magnons) could eliminate the energy loss, or Joule heating, associated with electron-based devices. But at the time, the spin wave signals could not be used to reset the to overwrite existing data.

Leave a Comment

If you are already a member, you can use this form to update your payment info.

Lifeboat Foundation respects your privacy! Your email address will not be published.