Toggle light / dark theme

Serotonin system’s hidden complexity may reshape understanding of day-to-day decision making

Our lives are filled with binary decisions—choices between one of two alternatives. But what’s really happening inside our brains when we engage in this kind of decision making?

A University of Ottawa Faculty of Medicine-led study published in Nature Neuroscience sheds new light on these big questions, illuminating a general principle of neural processing in a mysterious region of the midbrain that is the very origin of our central serotonin (5-HT) system, a key part of the nervous system involved in a remarkable range of cognitive and behavioral functions.

“The current dominating model is that individual 5-HT neurons are acting independently from one another. While it had previously been suggested that 5-HT neurons may rather be connected with one another, it had not been directly demonstrated. That is what we did here. We also identify an intriguing processing role—or a computation—that is supported by this particular type of connectivity between 5-HT neurons,” says Dr. Jean-Claude Béïque, full professor in the Faculty’s Department of Cellular and Molecular Medicine and co-director of the uOttawa Brain and Mind Research Institute’s Centre for Neural Dynamics and Artificial Intelligence.

Leave a Comment

Lifeboat Foundation respects your privacy! Your email address will not be published.