Menu

Blog

Page 17

Dec 19, 2024

Thin-film tech makes nuclear clocks a 1,000 times less radioactive and more affordable

Posted by in category: particle physics

In the quest for ultra-precise timekeeping, scientists have turned to nuclear clocks. Unlike optical atomic clocks—which rely on electronic transitions—nuclear clocks utilize the energy transitions in the atom’s nucleus, which are less affected by outside forces, meaning this type of clock could potentially keep time more accurately than any previously existing technology.

However, building such a clock has posed major challenges—thorium-229, one of the isotopes used in nuclear clocks, is rare, radioactive, and extremely costly to acquire in the substantial quantities required for this purpose.

Reported in a study published in Nature, a team of researchers, led by JILA and NIST Fellow and University of Colorado Boulder Physics professor Jun Ye, in collaboration with Professor Eric Hudson’s team at UCLA’s Department of Physics and Astronomy, have found a way to make nuclear clocks a thousand times less radioactive and more cost-effective, thanks to a method creating thin films of thorium tetrafluoride (ThF4).

Dec 19, 2024

Physicists magnetize a material with light: Terahertz technique could improve memory chip design

Posted by in categories: computing, particle physics

MIT physicists have created a new and long-lasting magnetic state in a material, using only light.

In a study that appears in Nature, the researchers report using a —a light source that oscillates more than a trillion times per second—to directly stimulate atoms in an antiferromagnetic material. The laser’s oscillations are tuned to the natural vibrations among the material’s atoms, in a way that shifts the balance of atomic spins toward a new magnetic state.

The results provide a new way to control and switch , which are of interest for their potential to advance information processing and memory chip technology.

Dec 19, 2024

The Puzzle of Radiation-Resistant Alloys

Posted by in categories: nuclear energy, particle physics, robotics/AI

Atomic simulations deepen the mystery of how engineered materials known as refractory high-entropy alloys can suffer so little damage by radiation.

Refractory high-entropy alloys are materials made from multiple high-melting-point metals in roughly equal proportions. Those containing tungsten exhibit minimal changes in mechanical properties when exposed to continuous radiation and could be used to shield the crucial components of future nuclear reactors. Now Jesper Byggmästar and his colleagues at the University of Helsinki have performed atomic simulations that explore the uncertain origins of this radiation resistance [1]. The findings could help scientists design novel materials that are even more robust than these alloys in extreme environments.

The researchers studied a tungsten-based refractory high-entropy alloy using state-of-the-art simulations guided by machine learning. In particular, they modeled the main mechanism by which radiation can disrupt such an alloy’s atomic structure. In this mechanism, the incoming radiation causes one atom in the alloy to displace another atom, forming one or more structural defects. The team determined the threshold energy needed to induce such displacements and its dependence on the masses of the two involved atoms.

Dec 19, 2024

Taking the Temperature of Earth’s Core

Posted by in category: futurism

By measuring the melting temperature of iron under high transient pressure, researchers set a limit on the temperature at the boundary between the inner and outer cores.

Dec 19, 2024

Electrons Channel Surf to Ultrahigh Energies

Posted by in category: particle physics

A laser-driven electron accelerator delivers beams of 10-GeV electrons—an approach that could lead to cheaper, more compact alternatives to large-scale x-ray sources and particle accelerators.

Dec 19, 2024

Lasers Unlock the Next Frontier in Particle Acceleration

Posted by in categories: biotech/medical, materials

Using dual lasers and an advanced gas injection system, researchers at the Berkeley Lab Laser Accelerator Center (BELLA) accelerated a high-quality electron beam to 10 billion electronvolts (10 GeV) over a distance of just 30 centimeters.

Laser-plasma accelerators have the potential to dramatically shrink the size and cost of particle accelerators, benefiting fields such as high-energy physics, medicine, and materials science. Key achievements from BELLA’s recent experiment include:

Dec 19, 2024

Precision Perfected: How Nuclear Clocks Are Changing Time

Posted by in category: innovation

Scientists are developing nuclear clocks using thin films of thorium tetrafluoride, which could revolutionize precision timekeeping by being less radioactive and more cost-effective than previous models.

This new technology, pioneered by a collaborative research team, enables more accessible and scalable nuclear clocks that may soon move beyond laboratory settings into practical applications like telecommunications and navigation.

Breakthrough in Nuclear Clock Technology.

Dec 19, 2024

Proof-of-concept study bioengineers therapeutics for improved cancer treatment

Posted by in categories: bioengineering, biotech/medical

A team of Children’s Medical Research Institute (CMRI) scientists has identified a new method for producing a therapeutic product that has the potential to improve the treatment of cancer.

The work by Associate Professor Leszek Lisowski and his Translational Vectorology Research Unit is published in the journal Molecular Therapy.

Chimeric antigen receptor (CAR) T cells, also known as CAR T therapies, are a relatively new form of treatment showing very exciting results for several types of cancer. While initially validated for the treatment of B cell malignancies, especially (ALL), the technology has also shown promise for other cancer types, including solid tumors.

Dec 19, 2024

Sleep apnea linked to changes in the brain

Posted by in categories: health, neuroscience

People with breathing problems during sleep may have a larger hippocampus, the area of the brain responsible for memory and thinking, according to a study published in the December 18, 2024, online issue of Neurology.

The study, which included mostly Latino people, also found that those with lower during sleep had changes in the deep parts of the brain, the , a common finding of decreased that develops with age.

Sleep disordered breathing is a range of conditions that cause abnormal breathing during sleep, including snoring and . Obstructive sleep apnea is when a person stops breathing five or more times per hour. When breathing stops, it can lower oxygen levels, affecting the brain.

Dec 19, 2024

The largest galaxy in the universe, Alcyoneus. #astronomy #physics #space

Posted by in categories: physics, space

Non-personalized content and ads are influenced by things like the content you’re currently viewing and your location (ad serving is based on general location). Personalized content and ads can also include things like video recommendations, a customized YouTube homepage, and tailored ads based on past activity, like the videos you watch and the things you search for on YouTube. We also use cookies and data to tailor the experience to be age-appropriate, if relevant.

Select “More options” to see additional information, including details about managing your privacy settings. You can also visit g.co/privacytools at any time.

Page 17 of 12,220First1415161718192021Last