Toggle light / dark theme

In our Founder Interview series, we highlight the brightest minds in preventive health, wellness, and longevity. In Episode 6, we’re honored to feature Dr. Emil Kenziorra, founder and CEO at Tomorrow Biostasis —one of the world-leading human cryopreservation experts.

Tell us a little about yourself and your current venture

Doctor and researcher by training, entrepreneur by trade. Longevity has always been my motivation, with a focus on maximal life span extension. I’m running Tomorrow.bio and the non-profit European Biostasis Foundation to push human cryopreservation forward.

A research team has developed the world’s first next-generation betavoltaic cell by directly connecting a radioactive isotope electrode to a perovskite absorber layer. By embedding carbon-14-based quantum dots into the electrode and enhancing the perovskite absorber layer’s crystallinity, the team achieved both stable power output and high energy conversion efficiency.

The work is published in the journal Chemical Communications. The team was led by Professor Su-Il In of the Department of Energy Science & Engineering at DGIST.

The newly developed technology offers a stable, long-term power supply without the need for recharging, making it a promising next-generation energy solution for fields requiring long-term power autonomy, such as , , and military applications.

A research team has succeeded in inducing ferromagnetism, a key property of conventional magnets, in pure vanadium oxide, a compound not previously recognized for such magnetic behavior. Through a series of experiments, the team verified that by precisely adjusting the oxidation state of vanadium ions, they could induce the element to behave magnetically.

The research is published in the journal Advanced Functional Materials. The team was led by Professor Chun-Yeol You from the Department of Physics and Chemistry at DGIST.

Vanadium oxide (VO) is widely known for its metal-insulator transition (MIT), a phenomenon in which its electrical conductivity dramatically changes depending on temperature. While its have been extensively studied, its —especially the possibility of ferromagnetism—remain largely unexplored. VO typically exhibits antiferromagnetic or paramagnetic behavior, which limits its application as a magnetic material.

Researchers at QuTech in Delft have combined superconductors and quantum dots to observe and manipulate so-called Majorana bound states, which have properties that could enable stable quantum computation. By building a chain of three coupled quantum dots in a two-dimensional electron gas, they were able to demonstrate properties of Majoranas that are essential for the study of Majorana-based quantum bits.

The results are published in Nature.

One of the key issues in quantum computing remains the inherent instability of quantum bits. In the quest for fault-tolerant quantum computers, topological quantum bits are expected to be significantly less prone to errors. Key to these qubits are quasiparticles called Majorana bound states, which have been predicted to appear on opposite edges of one-dimensional superconducting systems.

A watched pot never boils, goes the old saying, but many of us have at least kept an eye on the pot, waiting for the bubbling to start. It’s satisfying to finally see the rolling boil, behind which complex physical mechanisms are at play.

When this happens, the that form continuously change in shape and size. These dynamic movements influence the surrounding fluid flow, thereby affecting the efficiency of heat transfer from the to the water.

Manipulating small amounts of liquid at high speeds and frequencies is essential for processing large numbers of samples in medical and chemical fields, such as in cell sorting. Microbubble vibrations can create flows and sound waves, aiding in liquid manipulation. However, the and interactions of multiple bubbles is poorly understood, so their applications have been limited.

A research team has developed a “next-generation AI electronic nose” capable of distinguishing scents like the human olfactory system does and analyzing them using artificial intelligence. This technology converts scent molecules into electrical signals and trains AI models on their unique patterns. It holds great promise for applications in personalized health care, the cosmetics industry, and environmental monitoring.

The study is published in the journal ACS Nano. The team was led by Professor Hyuk-jun Kwon of the Department of Electrical Engineering and Computer Science at DGIST, with integrated master’s and Ph.D. student Hyungtae Lim as first author.

While conventional electronic noses (e-noses) have already been deployed in areas such as and gas detection in industrial settings, they struggle to distinguish subtle differences between similar smells or analyze complex scent compositions. For instance, distinguishing among floral perfumes with similar notes or detecting the faint odor of fruit approaching spoilage remains challenging for current systems. This gap has driven demand for next-generation e-nose technologies with greater precision, sensitivity, and adaptability.

Researchers at Rensselaer Polytechnic Institute (RPI) are tackling one of the most complex challenges in the world of quantum information—how to create reliable, scalable networks that can connect quantum systems over distances.

Their work has resulted in two publications in Physical Review Letters and Science Advances, bringing us one step closer to realizing large-scale networked , or even the quantum internet.

The research team, which includes faculty members from the RPI Department of Physics, Applied Physics, and Astronomy, and the Department of Computer Science, is led by Assistant Professor Xiangyi Meng, Ph.D. Their research focuses on designing that use entanglement—a phenomenon where quantum particles become mysteriously correlated.

Innsbruck physicists have presented a new architecture for improved quantum control of microwave resonators. In a study recently published in PRX Quantum, they show how a superconducting fluxonium qubit can be selectively coupled and decoupled with a microwave resonator and without additional components. This makes potentially longer storage times possible.

Microwave resonators are considered a promising building block for the development of robust quantum computers, as they store quantum information in more complex states. This simplifies and allows significantly longer storage times.

“The storage time of of these microwave resonators has so far been limited by undesirable interactions with the used to control them,” explains Gerhard Kirchmair from the Department of Experimental Physics at the University of Innsbruck and the Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences.

By using antibodies from a human donor with a self-induced hyper-immunity to snake venom, scientists have developed the most broadly effective antivenom to date, which is protective against the likes of the black mamba, king cobra, and tiger snakes in mouse trials. Described in the journal Cell, the antivenom combines protective antibodies and a small molecule inhibitor and opens a path toward a universal antiserum.

How we make has not changed much over the past century. Typically, it involves immunizing horses or sheep with venom from a single snake species and collecting the produced. While effective, this process could result in to the non-human antibodies, and treatments tend to be species and region-specific.

While exploring ways to improve this process, scientists stumbled upon someone hyper-immune to the effects of snake neurotoxins. “The donor, for a period of nearly 18 years, had undertaken hundreds of bites and self-immunizations with escalating doses from 16 species of very lethal snakes that would normally kill a horse,” says first author Jacob Glanville, CEO of Centivax, Inc.