Toggle light / dark theme

A Kansas State University engineer recently published results from an observational study in support of a century-old theory that directly challenges the validity of the Big Bang theory.

Lior Shamir, associate professor of computer science, used imaging from a trio of telescopes and more than 30,000 galaxies to measure the redshift of galaxies based on their distance from Earth. Redshift is the change in the frequency of waves that a galaxy emits, which use to gauge a galaxy’s speed.

Shamir’s findings lend support to the century-old “tired light” theory instead of the Big Bang. The findings are published in the journal Particles.

It is a deep question, from deep in our history: when did human language as we know it emerge? A new survey of genomic evidence suggests our unique language capacity was present at least 135,000 years ago. Subsequently, language might have entered social use 100,000 years ago.

Our species, Homo sapiens, is about 230,000 years old. Estimates of when language originated vary widely, based on different forms of evidence, from fossils to cultural artifacts. The authors of the new analysis took a different approach. They reasoned that since all human languages likely have a —as the researchers strongly think—the key question is how far back in time regional groups began spreading around the world.

“The logic is very simple,” says Shigeru Miyagawa, an MIT professor and co-author of a new paper summarizing the results.

A team of quantum computer researchers at quantum computer maker D-Wave, working with an international team of physicists and engineers, is claiming that its latest quantum processor has been used to run a quantum simulation faster than could be done with a classical computer.

In their paper published in the journal Science, the group describes how they ran a quantum version of a mathematical approximation regarding how matter behaves when it changes states, such as from a gas to a liquid—in a way that they claim would be nearly impossible to conduct on a traditional computer.

Over the past several years, D-Wave has been working on developing quantum annealers, which are a subtype of quantum computer created to solve very specific types of problems. Notably, landmark claims made by researchers at the company have at times been met with skepticism by others in the field.

Light-emitting diodes (LEDs) are widely used electroluminescent devices that emit light in response to an applied electric voltage. These devices are central components of various electronic and optoelectronic technologies, including displays, sensors and communication systems.

Over the past decades, some engineers have been developing alternative LEDs known as quantum LEDs (QLEDs), which utilize (i.e., nm-size semiconducting particles) as light-emitting components instead of conventional semiconductors. Compared to traditional LEDs, these quantum dot-based devices could achieve better energy-efficiencies and operational stabilities.

Despite their potential, most QLEDs developed so far have been found to have significantly slower response speeds than typical LEDs using inorganic III-V semiconductors. In other words, they are known to take a longer time to emit light in response to an applied electrical voltage.

There are moments in the history of human thought when a simple realization transforms our understanding of reality. A moment when chaos reveals itself as structure, when disorder folds into meaning, and when what seemed like an arbitrary universe unveils itself as a system governed by hidden symmetries.

The Bekenstein bound was one such revelation—an idea that whispered to us that entropy, information and gravity are not separate but rather deeply intertwined aspects of the cosmos. Jacob Bekenstein, in one of the most profound insights of modern physics, proposed that the entropy of any physical system is not limitless; it is constrained by its energy and the smallest sphere that can enclose it.

This revelation was radical: Entropy—long regarded as an abstract measure of disorder—was, in fact, a quantity deeply bound to the fabric of space and time. His bound, expressed in its simplest form, suggested that the total information that could be stored in a region of space was proportional to its energy and its size.

Not long to go now: After more than nine months on the International Space Station, two astronauts are a step closer to returning home following the launch of a crew swap mission on Friday.

A Falcon 9 rocket with a Crew Dragon fixed to its top blasted off from the Kennedy Space Center in Florida at 7:03 pm (2303 GMT), carrying a four-member team bound for the orbital outpost.

“We celebrate the countless individuals all over the world that have made this journey possible,” said astronaut Nichole Ayers, the designated pilot of the Crew-10 mission, just before launch.

Most cells in the body send out little messengers called extracellular vesicles that carry proteins, lipids, and other bioactive molecules to other cells, playing an important role in intercellular communication. But healthy cells are not the only ones that rely on extracellular vesicles. Cancer cells do, too. Small extracellular vesicles that are shed from tumor cells contribute to how cancer spreads to healthy tissue.

These small messengers could be a key to developing new cancer-fighting drugs and therapies, but it has been unclear how exactly the recipient cells absorb the extracellular vesicles and their cargo. Recent research used state-of-the-art imaging to observe the uptake of tumor-derived small extracellular vesicles by target cells. The results were published in Nature Communications on March 12, 2025.

“In recent years, extracellular vesicles have attracted attention as a carrier of intercellular signaling. However, the mechanism of their internalization by target cells has not been well understood. We wanted to elucidate the pathway and mechanism of internalization of extracellular vesicles by target cells,” said Kenichi G. N. Suzuki, a professor at the Institute for Glyco-core Research at Gifu University in Gifu and a chief at the Division of Advanced Bioimaging, National Cancer Center Research Institute in Tokyo, Japan.

Does autoimmunity underlie minimal change disease?

Tobias B. Huber, Nicola M. Tomas & team report a direct pathogenic role of anti-nephrin autoantibodies in the development of podocytopathy with a minimal change disease phenotype:

The electron microscopy image shows moderate podocyte foot process effacement (without electron-dense deposits) in the anti-nephrin rabbit.


Address correspondence to: Tobias B. Huber or Nicola M. Tomas, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany. Phone: 49.40.7410.53908; Email: [email protected] (TBH); [email protected] (NMT).

A novel cortical biomarker can accurately distinguish high and low pain-sensitive individuals and may predict the transition from acute to chronic pain.


Importance Biomarkers would greatly assist decision-making in the diagnosis, prevention, and treatment of chronic pain.

Objective To undertake analytical validation of a sensorimotor cortical biomarker signature for pain consisting of 2 measures: sensorimotor peak alpha frequency (PAF) and corticomotor excitability (CME).

Design, Setting, and Participants This cohort study at a single center (Neuroscience Research Australia) recruited participants from November 2020 to October 2022 through notices placed online and at universities across Australia. Participants were healthy adults aged 18 to 44 years with no history of chronic pain or a neurological or psychiatric condition. Participants experienced a model of prolonged temporomandibular pain with outcomes collected over 30 days. Electroencephalography to assess PAF and transcranial magnetic stimulation (TMS) to assess CME were recorded on days 0, 2, and 5. Pain was assessed twice daily from days 1 through 30.

What excites you the most about the potential of quantum computers?

💡 Future Business Tech explores AI, emerging technologies, and future technologies.

SUBSCRIBE: https://bit.ly/3geLDGO

This video explores the future of quantum computing. Related terms: ai, future business tech, future technology, future tech, future business technologies, future technologies, quantum computing, etc.

ℹ️ Some links are affiliate links. They cost you nothing extra but help support the channel so I can create more videos like this.

#technology #quantumcomputing