Menu

Blog

Page 1453

Jan 22, 2024

Unlocking the secrets of the universe through neutrinoless double beta decay

Posted by in category: particle physics

The discovery that neutrinos have mass was groundbreaking. However, their absolute mass remains unknown. Neutrinoless double beta decay experiments aim to determine whether neutrinos are their own antiparticles and, if so, provide a means to determine the mass of the neutrino species involved.

Determining the mass through neutrinoless double beta decay experiments using 76 Ge is only possible if scientists understand the properties of the decay of 76 Ge into selenium-76 (76 Se). A study published in Physical Review C provides key input for these kinds of experiments.

Germanium-based neutrinoless double beta decay (0νββ) experiments hold great promise for unraveling the mysteries surrounding neutrinos. The observation of this rare decay process not only offers the prospect of determining the nature of these enigmatic particles, but also the determination of their , provided the probability governing the decay is reliably known.

Jan 22, 2024

Cobalt-free batteries could power cars of the future

Posted by in categories: finance, sustainability, transportation

Many electric vehicles are powered by batteries that contain cobalt — a metal that carries high financial, environmental, and social costs.

MIT researchers have now designed a battery material that could offer a more sustainable way to power electric cars. The new lithium-ion battery includes a cathode based on organic materials, instead of cobalt or nickel (another metal often used in lithium-ion batteries).

In a new study, the researchers showed that this material, which could be produced at much lower cost than cobalt-containing batteries, can conduct electricity at similar rates as cobalt batteries. The new battery also has comparable storage capacity and can be charged up faster than cobalt batteries, the researchers report.

Jan 22, 2024

A new drug candidate can shrink kidney cysts

Posted by in category: biotech/medical

Autosomal dominant polycystic kidney disease (ADPKD), the most common form of polycystic kidney disease, can lead to kidney enlargement and eventual loss of function. The disease affects more than 12 million people worldwide, and many patients end up needing dialysis or a kidney transplant by the time they reach their 60s.

Researchers at MIT and Yale University School of Medicine have now found that a compound originally developed as a potential cancer treatment holds promise for treating ADPKD. The drug works by exploiting kidney cyst cells’ vulnerability to oxidative stress — a state of imbalance between damaging free radicals and beneficial antioxidants.

In a study employing two mouse models of the disease, the researchers found that the drug dramatically shrank kidney cysts without harming healthy kidney cells.

Jan 22, 2024

Zero Bubble Pipeline Parallelism

Posted by in category: futurism

Join the discussion on this paper page.

Jan 22, 2024

AlphaFold found thousands of possible psychedelics. Will its predictions help drug discovery?

Posted by in categories: biotech/medical, robotics/AI

Researchers have doubted how useful the AI protein-structure tool will be in discovering medicines — now they are learning how to deploy it effectively.

Jan 22, 2024

The Green Spark: A Catalyst Transforming Water Into Energy Wealth

Posted by in categories: energy, sustainability

A stable, reactive, and cost-effective ruthenium catalyst for sustainable hydrogen production through proton exchange membrane water electrolysis.

Sustainable electrolysis for green hydrogen production is challenging, primarily due to the absence of efficient, low-cost, and stable catalysts for the oxygen evolution reaction in acidic solutions. A team of researchers has now developed a ruthenium catalyst by doping it with zinc, resulting in enhanced stability and reactivity compared to its commercial version. The proposed strategy can revolutionize hydrogen production by paving the way for next generation electrocatalysts that contribute to clean energy technologies.

Electrolysis and Catalyst Challenges.

Jan 22, 2024

Study probes unexplored combination of three chemical elements for superconductivity

Posted by in categories: chemistry, computing, engineering, transportation

Skoltech researchers and their colleagues from MIPT and China’s Center for High Pressure Science and Technology Advanced Research have computationally explored the stability of the bizarre compounds of hydrogen, lanthanum, and magnesium that exist at very high pressures. In addition to matching the various three-element combinations to the conditions at which they are stable, the team discovered five completely new compounds of hydrogen and either magnesium or lanthanum only.

Published in Materials Today Physics, the study is part of the ongoing search for room-temperature superconductors, the discovery of which would have enormous consequences for power engineering, transportation, computers and more.

“In the previously unexplored system of hydrogen, lanthanum, and magnesium, we find LaMg3H28 to be the ‘warmest’ superconductor. It loses below −109°C, at about 2 million atmospheres—not a record, but not bad at all either,” the study’s principal investigator, Professor Artem R. Oganov of Skoltech, commented.

Jan 22, 2024

Black Holes All the Way Down: New Multimessenger Evidence for a Binary Black Hole Merger Within an Active Galactic Nucleus

Posted by in categories: cosmology, physics

In today’s paper, a unique gravitational wave event is re-examined as the possible origin of an AGN flare. What are the odds?

Jan 22, 2024

Life on Earth Uses Water as a Solvent. What are Some Other Options for Life as We Don’t Know it?

Posted by in category: chemistry

Your body’s cells use water to dissolve chemicals. It’s the same with all life on Earth. But could other fluids work as a solvent? A new paper reviews the potential for different liquid solvents to support life and proposes some surprising candidates, like liquid carbon dioxide, ammonia, and even concentrated sulfuric acid. Each of these solvents is liquid in dramatically different conditions, helping expand the possibilities for life as we don’t know it.

Jan 22, 2024

What 5000 Ancient Human Genomes Can Reveal About European

Posted by in categories: biotech/medical, genetics

Originally published on Illumina News Center

Call it archaeology by other means. Rather than sifting through tons of dirt and carefully cataloguing human artifacts, Eske Willerslev and his colleagues have used Illumina NovaSeq Systems to sequence 5,000 ancient human genomes, revealing previously unseen historical nuance. This research tour de force, which is being published this month in four papers in the journal Nature, offers a rich view of early human migrations, mating habits, and disease variants, and their impact on modern Europeans.

“We wanted to sequence this ancient DNA so we could better understand human history,” says Willerslev, who is professor and director at the Centre of Excellence in GeoGenetics at the University of Copenhagen and the Prince Philip Professor of Ecology & Evolution at Cambridge University. “These results describe where we came from and why there’s so much variation in disease risk.”