Menu

Blog

Page 1438

Feb 21, 2024

Chinese Scientists Unveil Secrets of Bright-Dark Exciton Transition in a Semiconductor Material

Posted by in categories: particle physics, quantum physics

A collaborative study conducted by Prof. Zhao Jin, Associate Prof. Zheng Qijing from the University of Science and Technology of China (USTC), and Prof. Hrvoje Petek from the University of Pittsburgh, has revealed the mechanisms behind the transition of bright-dark excitons in anatase TiO2. Their findings have been published in Proceedings of the National Academy of Sciences.

Understanding Excitons

Excitons, quasi-particles formed by the binding of electrons and holes in condensed matter systems via Coulomb interaction, exhibit distinct properties as bright and dark excitons. While bright excitons directly couple with light and play a pivotal role in light absorption, dark excitons, with their relatively longer lifetimes, hold significance in quantum information processing, Bose-Einstein condensation, and light-energy harvesting.

Feb 21, 2024

NASA’s Intuitive Machines Moon Mission Ignites With Revolutionary Liquid Methane Engine

Posted by in categories: innovation, space travel

NASA ’s lunar mission with Intuitive Machines showcases successful launch, innovative engine testing, and advanced navigation technology for precise lunar exploration.

After a successful launch on February 15, six NASA science instruments and technology demonstrations continue their journey to the Moon aboard Intuitive Machines’ lander named Odysseus. The company confirmed communications contact with its mission operations control in Houston, and its lander continues to perform as expected.

Known as IM-1, Intuitive Machines successfully transmitted its first images back to Earth on February 16. These were captured shortly after separation from SpaceX ’s second stage, on Intuitive Machines’ first journey to the Moon as part of the agency’s Commercial Lunar Payload Services initiative and Artemis campaign.

Feb 21, 2024

From Sci-Fi to Reality: Scientists Develop Unbreakable, Bendable Optical Sensor

Posted by in categories: nanotechnology, robotics/AI, wearables

Researchers at Osaka University have developed a groundbreaking flexible optical sensor that works even when crumpled. Using carbon nanotube photodetectors and wireless Bluetooth technology, this sensor enables non-invasive analysis and holds promise for advancements in imaging, wearable technology, and soft robotics. Credit: SciTechDaily.com.

Researchers at Osaka University have created a soft, pliable, and wireless optical sensor using carbon nanotubes and organic transistors on an ultra-thin polymer film. This innovation is poised to open new possibilities in imaging technologies and non-destructive analysis techniques.

Recent years have brought remarkable progress in imaging technology, ranging from high-speed optical sensors capable of capturing more than two million frames per second to compact, lensless cameras that can capture images with just a single pixel.

Feb 21, 2024

A Boost in Dopamine During Adolescence Permanently Amplifies Impulsivity and Aggression

Posted by in categories: biotech/medical, neuroscience

Drugs blocking dopamine transporters may be harmful for healthy teens but helpful for those with pathological dopamine hypofunction.

In a breakthrough finding researchers at Columbia University Irving Medical Center identified a sensitive developmental period during adolescence that impacts adult impulsivity, aggression, and dopamine function in mice.

As organisms grow from embryo to adult, they pass through sensitive time periods where developmental trajectories are influenced by environmental factors. These windows of plasticity often allow organisms to adapt to their surroundings through evolutionarily selected mechanisms.

Feb 21, 2024

Challenging Traditional Theories — Physicists Develop New Method To Quantify Quantum Entanglement

Posted by in categories: computing, quantum physics

Entanglement is a phenomenon in quantum physics where two or more systems become interconnected in a manner that makes it impossible to describe their quantum states separately. When systems interact and become entangled, they exhibit strong correlations. This concept is crucial for quantum computing, as the degree of entanglement directly influences the optimization and efficiency of a quantum computer. The more entangled the systems are, the better the performance of the quantum computer.

A study conducted by researchers affiliated with the Department of Physics at São Paulo State University’s Institute of Geosciences and Exact Sciences (IGCE-UNESP) in Rio Claro, Brazil, tested a novel method of quantifying entanglement and the conditions for its maximization. Applications include optimizing the construction of a quantum computer.

An article on the study is published as a Letter in Physical Review B.

Feb 21, 2024

Orbital Magic: Japanese Scientists Pave the Way for Next-Gen Spintronics

Posted by in categories: materials, particle physics

Directing magnetization with a low electric field is crucial for advancing effective spintronic devices. In spintronics, the characteristics of an electron’s spin or magnetic moment are leveraged for information storage. By modifying orbital magnetic moments through strain, it’s possible to manipulate electron spins, leading to an enhanced magnetoelectric effect for superior performance.

Japanese researchers, including Jun Okabayashi from the University of Tokyo, revealed a strain-induced orbital control mechanism in interfacial multiferroics. In multiferroic material, the magnetic property can be controlled using an electric field—potentially leading to efficient spintronic devices. The interfacial multiferroics that Okabayashi and his colleagues studied consist of a junction between a ferromagnetic material and a piezoelectric material. The direction of magnetization in the material could be controlled by applying voltage.

Feb 21, 2024

NASA’s Next-Gen Exoplanet-Imaging Technology Advances Search for Extraterrestrial Life

Posted by in category: alien life

NASA ’s Roman Space Telescope ’s Coronagraph Instrument, designed to observe distant exoplanets by blocking stellar light, has passed essential tests, marking a significant advancement in space observation technology and the search for extraterrestrial life.

A cutting-edge tool to view planets outside our solar system has passed two key tests ahead of its launch as part of the agency’s Roman Space Telescope by 2027.

The Coronagraph Instrument on NASA’s Nancy Grace Roman Space Telescope will demonstrate new technologies that could vastly increase the number of planets outside our solar system (exoplanets) that scientists can directly observe. Designed and built at the agency’s Jet Propulsion Laboratory in Southern California, it recently passed a series of critical tests ahead of launch. That includes tests to ensure the instrument’s electrical components don’t interfere with those on the rest of the observatory and vice versa.

Feb 21, 2024

Global Implications: More Aerosol Particles Than Thought Are Forming Over Siberia

Posted by in categories: climatology, particle physics

Recent research has discovered that, in contrast to earlier assumptions, substantial quantities of aerosol particles are generated across extensive regions of the West Siberian taiga during spring. These findings indicate that rising temperatures can greatly influence the climate due to this phenomenon.

Aerosol particles significantly contribute to the Earth’s cooling process. They can impact the amount of sunlight that reaches the Earth’s surface either directly or indirectly by aiding in cloud formation. These particles originate from various gas molecules and are found all over the planet.

To understand the circumstances in which these particles are formed, researchers conduct measurements in various environments all over the world. For example, the Finnish flagship station SMEAR II has conducted measurements in the boreal forest for 25 years.

Feb 21, 2024

Quantum dark states lead to an advantage in noise reduction

Posted by in categories: particle physics, quantum physics

While atomic clocks are already the most precise timekeeping devices in the universe, physicists are working hard to improve their accuracy even further. One way is by leveraging spin-squeezed states in clock atoms.

Spin-squeezed states are entangled states in which particles in the system conspire to cancel their intrinsic quantum noise. These states, therefore, offer great opportunities for quantum-enhanced metrology since they allow for more precise measurements. Yet, spin-squeezed states in the desired optical transitions with little outside noise have been hard to prepare and maintain.

One particular way to generate a spin-squeezed state, or squeezing, is by placing the clock atoms into an , a set of mirrors where light can bounce back and forth many times. In the cavity, atoms can synchronize their photon emissions and emit a burst of light far brighter than from any one atom alone, a phenomenon referred to as superradiance. Depending on how superradiance is used, it can lead to entanglement, or alternatively, it can instead disrupt the desired quantum state.

Feb 21, 2024

AI Generated Videos Just Changed Forever

Posted by in categories: food, robotics/AI

Reminder: It’s only been 1 YEAR since the Will Smith eating spaghetti videoOpenAI Sora: https://openai.com/sora#researchThumbnail character: BasedAFMKBHD Mer…