Toggle light / dark theme

This is extremely interesting and innovating to me. Why? Just imagine if your car (even a self driving car) your car breaks down on a road somewhere 10 to 25 miles away from the nearest gas station or town. And, you have a backup system that alerts you in the car that it has to switch over to tow mode, and engages a robotic pull system and set your flashers on then tows you to the nearest gas station or police station; etc.? No more tow bills, no more fears to the elderly or others being exposed on the side of the road. BTW — the car engine keeps the car microbot/s charged up.


A team of tiny robot ants pull a car that is thousands of times their weight as part of an experiment at Stanford University.

Read more

Developers can now see an early preview of experimental WebAssembly support in an internal Microsoft Edge build with the AngryBots demo, alongside similar previews for Firefox and Chrome. WebAssembly is a new, portable, size and load-time-efficient binary format suitable for compiling to the Web.

In the video above, a demo running in Microsoft Edge uses the preliminary WebAssembly support in the Chakra engine. The demo starts up significantly faster than just using asm.js, as the WebAssembly binaries have a smaller file size and parse more quickly than plain JavaScript, which needs to be parsed in the asm.js case.

Read more about WebAssembly on the Microsoft Edge Dev Blog.

Read more

One of the latest inventions out of Tel Aviv University can patch up broken hearts. We’re talking about the real organs here, especially those damaged by myocardial infarction or heart attack. A team from the Israeli university created a “cyborg heart patch” that combines both living tissue and electronic components to replace the damaged parts of the organ. “It’s very science fiction, but it’s already here,” says one of its creators, Prof. Tal Dvir. “[W]e expect it to move cardiac research forward in a big way.” The patch can contract and expand like real heart tissue can, but it can do much, much more than that.

The electronic components allow doctors to remotely monitor their patients’ condition from afar. A physician could log into a computer and see if the implant is working as intended. If he senses that something’s amiss, he could release drugs to, say, regulate inflammation or fix the lack of oxygen. That sounds dangerous to us, since computers can be hacked. But the researchers are aiming to develop the patch further so it can regulate itself with no human intervention.

Dvir warns that the “practical realization of the technology may take some time.” For now, those suffering from cardiovascular diseases will have to rely on current treatment methods. The team is still in the midst of refining their cyborg heart patch. Plus, they’re looking at how to create bionic brain and spinal cord tissues using what they’ve learned so far to treat neurological conditions.

Read more

Imagine a world with little or no concrete. Would that even be possible? After all, concrete is everywhere—on our roads, our driveways, in our homes, bridges and buildings. For the past 200 years, it’s been the very foundation of much of our planet.

But the production of cement, which when mixed with water forms the binding agent in concrete, is also one of the biggest contributors to . In fact, about 5 percent of the planet’s greenhouse gas emissions comes from concrete.

An even larger source of is emitted from smokestacks at around the world. Carbon emissions from those plants are the largest source of harmful global greenhouse gas in the world.

Read more