Toggle light / dark theme

If you want to use one of today’s major VR headsets, whether the Oculus Rift, the HTC Vive, or the PS VR, you have to accept the fact that there will be an illusion-shattering cable that tethers you to the small supercomputer that’s powering your virtual world.

But researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) may have a solution in MoVr, a wireless virtual reality system. Instead of using Wi-Fi or Bluetooth to transmit data, the research team’s MoVR system uses high-frequency millimeter wave radio to stream data from a computer to a headset wirelessly at dramatically faster speeds than traditional technology.

There have been a variety of approaches to solving this problem already. Smartphone-based headsets such as Google’s Daydream View and Samsung’s Gear VR allow for untethered VR by simply offloading the computational work directly to a phone inside the headset. Or the entire idea of VR backpacks, which allow for a more mobile VR experience by building a computer that’s more easily carried. But there are still a lot of limitations to either of these solutions.

Read more

Our DNA encodes a complex biological blueprint for our lives.

Every toenail, artery, and brain cell we grow is meticulously planned and executed through our DNA’s unfathomably complex genetic instructions.

Recent genetics research has focused on how DNA may affect a person’s education, a field known as ‘educational genomics’.

Read more

Fat tissue, immune dysfunction and cellular senescence are closely related. Here we have some commentary from Reason at Fightaging! once of our new Patron sponsors about some recent research liking these factors together.

“Cellular senescence is one of the root causes of aging, and there are at present serious, well-funded efforts underway to produce rejuvenation therapies based on the selective destruction of senescent cells in old tissues. This progress is welcome, but it could have started a long time ago. It has taken many years of advocacy and the shoestring production of technology demonstrations to finally convince the broader community of scientists and funding institutions that the evidence has long merited serious investment in treatments to clear senescent cells”.

#sens #aging

Read more

Bioprinting has been all over the news in the past several years with headline-worthy breakthroughs like printed human skin, synthetic bones, and even a fully functional mouse thyroid gland.

3D printing paved the way for bioprinting thanks to the printers’ unique ability to recreate human tissue structures; their software can be written to ‘stack’ cells in precise patterns as directed by a digital model, and they can produce tissue in just hours and make numerous identical samples.

Despite the progress in bioprinting, however, more complex human organs continue to elude scientists, and resting near the top of the ‘more complex’ list are the kidneys.

Read more

More progress to help stroke victims.


Researchers at The University of Manchester have discovered that a potential new drug reduces the number of brain cells destroyed by stroke and then helps to repair the damage.

A reduction in blood flow to the brain caused by is a major cause of death and disability, and there are few effective treatments.

A team of scientists at The University of Manchester has now found that a potential new stroke drug not only works in rodents by limiting the death of existing brain cells but also by promoting the birth of new neurones (so-called neurogenesis).