Toggle light / dark theme

Something called the fast Fourier transform is running on your cell phone right now. The FFT, as it is known, is a signal-processing algorithm that you use more than you realize. It is, according to the title of one research paper, “an algorithm the whole family can use.”

Alexander Stoytchev – an associate professor of electrical and computer engineering at Iowa State University who’s also affiliated with the university’s Virtual Reality Applications Center, its Human Computer Interaction graduate program and the department of computer science – says the FFT algorithm and its inverse (known as the IFFT) are at the heart of signal processing.

And, as such, “These are algorithms that made the digital revolution possible,” he said.

Something called the fast Fourier transform is running on your cell phone right now. The FFT, as it is known, is a signal-processing algorithm that you use more than you realize. It is, according to the title of one research paper, “an algorithm the whole family can use.”

Alexander Stoytchev—an associate professor of electrical and computer engineering at Iowa State University who’s also affiliated with the university’s Virtual Reality Applications Center, its Human Computer Interaction graduate program and the department of computer science—says the FFT and its inverse (known as the IFFT) are at the heart of signal processing.

And, as such, “These are algorithms that made the digital revolution possible,” he said.

By this time, we can all conclude that Facebook is really ambitious when it comes to the production of high-end gadgets. This when you consider the Oculus line of devices, a VR wristband and RayBan AR glasses. And if that wasn’t enough, a new device is up for development.

The company has now revealed plans to build a mind-reading wristband letting people control devices without touching them. This is after the company finally acquired CTRL-Labs, a startup that is currently venturing into brain-computer interfaces. The deal has been reported to value at $1 billion.

The deal was then announced by Andrew Bosworth, Vice President of AR and VR at Facebook. “We spend a lot of time trying to get our technology to do what we want rather than enjoying the people around us,” he said.

Nearly one in 30 Americans over the age of 40 experience low vision—significant visual impairment that can’t be corrected with glasses, contact lenses, medication or surgery.

In a new study of patients with , an inherited degenerative eye disease that results in poor , Keck School of Medicine of USC researchers found that adapted augmented reality (AR) glasses can improve patients’ mobility by 50% and grasp performance by 70%.

“Current wearable low vision technologies using are limited and can be difficult to use or require patients to undergo extensive training,” said Mark Humayun, MD, Ph.D., director of the USC Dr. Allen and Charlotte Ginsburg Institute for Biomedical Therapeutics, codirector of the USC Roski Eye Institute and University Professor of Ophthalmology at the Keck School.

People say, well, but we’re going to stop being human if we merge with machines. No, that is what it means to be human.


Dr. Kurtzweil, I would like to ask you. You have made hundreds of predictions out of which many already have come true, and with no doubt many more will come through. But if you would have to single out your three most important predictions for the upcoming decade, what would they be?

Well, one is health and medicine. We talked about our bodies and our bodies are basically actually information because it’s governed by our genes. They are information processes. We didn’t used to treat it that way. It was basically hit or miss. We’d find something. Oh, here’s something that lowers blood pressure. Here’s something that kills HIV. And we would find these things accidentally, so progress was linear. Still valuable. I gave a speech to 12 and 13 year old science winners recently and I said you all would be senior citizens if it hadn’t been for this progress because life expectancy was 19 a thousand years ago. But this is going to go into high gear now. The enabling factor for health and medicine to become an information technology was the genome project. That itself is a perfect exponential and we now have the software of life and we’re also making exponential progress in being able to model it, simulate it, understand it and reprogram it.

Twenty years ago, entertainment was dominated by a handful of producers and monolithic broadcasters, a near-impossible market to break into.


And now, over 50 years later, AI is bringing stories to life like we’ve never seen before.

Converging with the rise of virtual reality and colossal virtual worlds, AI has begun to create vastly detailed renderings of dead stars, generate complex supporting characters with intricate story arcs, and even bring your favorite stars—whether Marlon Brando or Amy Winehouse—back to the big screen and into a built environment.

While still in its nascent stages, AI has already been used to embody virtual avatars that you can converse with in VR, soon to be customized to your individual preferences.

What is reality and how do we know? For many the answer is simple: What you see — hear, feel, touch, and taste — is what you get.

Your skin feels warm on a summer day because the sun exists. That apple you just tasted sweet and that left juices on your fingers, it must have existed. Our senses tell us that reality is there, and we use reason to fill in the blanks — that is, we know the sun doesn’t cease to exist at night even if we can’t see it.

But cognitive psychologist Donald Hoffman says we’re misunderstanding our relationship with objective reality. In fact, he argues that evolution has cloaked us in a perceptional virtual reality. For our own good.

A glove focused on user experience in interacting with virtual objects is in the news. This virtual reality glove is the topic of a research article. The researchers described their virtual reality glove in detail in their paper, “Pneumatic actuator and flexible piezoelectric sensor for soft virtual reality glove system,” in Scientific Reports.

No, this is hardly the first instance of researchers able to reproduce texture but this attempt is noteworthy. As pointed out in natureasia.com, the glove system in this instance is one that allows the wearer to manipulate a virtual hand, pick up an object in virtual reality and feel its shape.

Bill Andrews took to the D-brief blog on Discover to examine the glove’s characteristics— of and actuators. The Korean team designed it as a glove to manipulate a virtual hand inside a digital realm, said Andrews.