Toggle light / dark theme

Electric Aviation With Unlimited Range Is Getting Cheaper & Smaller

For the most part, we treat electric aviation like it’s something that we’ll see in the future. I mean, batteries are expensive and heavy, and they don’t hold that much energy per unit of weight. So, compared to, say, kerosene (jet fuel), batteries take up a lot more space and weight capacity in a plane design. This means either really poor range or carrying around nothing but batteries (which isn’t very useful).

But that’s only true for the largest of planes. The smaller the plane, the easier it has been for companies to electrify or even go full electric with it it. Once you get down to unmanned planes and helicopters that carry something like a small sensor payload (cameras, etc.), you’re in a realm where all-electric aviation has been around for over a decade.

Though, small unmanned systems like quadcopters tend to only fly for 30–45 minutes at most, while small fixed-wing remote piloted airplanes tend to fly for maybe 1–2 hours. What if you want to fly for a number of hours or even days to cover more ground? It turns out that there are some answers, and the usually involve solar.

The biggest project in history of mankind begins: 52 billion solar panels, and America fully covered

52 billion solar panels could soon be covering the American highway network. Researchers from the Chinese Academy of Sciences, Tsinghua University, Chinese Academy of Geosciences, and Columbia University have proposed a historic initiative which could see major global highways covered with solar panels.

The researchers publication “Roofing Highways With Solar Panels Substantially Reduces Carbon Emissions and Traffic Losses” in Earth’s Future advocate for the deployment of solar technology across the global highway network which spans up to 3.2 million kilometers.

In doing so, the researchers estimate that up to 17,578 TWh of electricity could be generated annually. This figure is equivalent to more than a staggering 60% of 2023’s energy consumption. This could offset up to 28% of global carbon emissions and reduce road accident incidences up to 11%.

Hyzon’s Fuel Cell Trucks Challenge The Diesel Norm

As a trailblazer in clean logistics, Hyzon continues to leverage hydrogen’s potential to fuel transportation innovations.


Hyzon Motors is making significant strides in revolutionizing the heavy-duty transportation industry with the production of its pioneering Class 8 200kW Fuel Cell Electric Truck. This milestone highlights the company’s dedication to advancing zero-emission technology and addressing sectors traditionally reliant on diesel.

The vehicle production results from a strategic partnership with North Carolina-based Fontaine Modification, which assembles the trucks by integrating Hyzon’s advanced fuel cell systems, battery packs, and hydrogen storage solutions into the chassis. This collaboration ensures each vehicle meets new standards in innovation and road-readiness.

Central to Hyzon’s Class 8 truck is its single stack 200kW fuel cell system, which is a breakthrough in efficiency and design. The system is 30% lighter and smaller than previous models, offering 25% more cost efficiency. This design provides a powerful yet economical solution to meet the demanding needs of heavy-duty transport.

LiMnO₂ Electrodes could Replace Ni/Co in Electric Vehicle Batteries

Lithium-ion (or Li-ion) batteries are heavy hitters when it comes to the world of rechargeable batteries. As electric vehicles become more common in the world, a high-energy, low-cost battery utilizing the abundance of manganese (Mn) can be a sustainable option to become commercially available and utilized in the automobile industry.

Currently, batteries used for powering electric vehicles (EVs) are nickel (Ni) and cobalt (Co)-based, which can be expensive and unsustainable for a society with a growing desire for EVs.

By switching the positive electrode materials to a lithium/manganese-based material, researchers aim to maintain the high performance of Ni/Co-based materials but with a low-cost, sustainable twist.

‘Massless’ battery promises a 70% increase in EV range

Researchers say they’ve built and tested a ‘structural battery’ that packs a device or EV’s chassis with energy, saving a ton of weight. It could unlock smartphones as thin as credit cards, laptops at half the weight and a 70% boost to EV range.

EVs rely heavily – pun intended – on large lithium-ion batteries to cover long distances. Researchers at Chalmers University of Technology wondered if they could build a battery that doubles as the load-bearing material holding the car together, and shed some weight.

As part of their work on what they call ‘massless energy storage,’ the research team in Sweden has developed a battery made of a carbon fiber composite. It promises similar stiffness to aluminum, while also being capable of storing a fair bit of energy – enough to be used commercially.

Uber and Waymo to offer driverless rides in Austin

“There are a bunch of stalls on campus where I go swing dancing. I guess those were the cruise ones,” says Dieck.

Last year, the self-driving car service Cruise suspended its fleet of nearly 1,000 cars nationwide following a hit-and-run crash, drawing concern about the partnership between Uber and Waymo, another robotaxi company.

“That might be one reason why I have never taken Waymo I would rather get in the car with someone who can maneuver, and you can see the rating that they have,” says Chester.

Most powerful fuel in history, created after Hawking predicted it: 8 grams for 1 million miles

Hydrogen has been defined on numerous occasions as “the fuel of the future”. We have seen other alternatives, such as ammonia or even methanol (which you may remember meeting with us), but what if there was an even more powerful one? Hawking predicted decades ago that the most powerful one could exist, and now they have finally created it. This is the new engine that has everything to revolutionize the planet but would require a huge mobilization of resources to manufacture.

The idea of using thorium for fueling cars has created the immense interest from auto enthusiasts, as such cars may become a clean, efficient and almost inexhaustible energy source for transport in the future. Nevertheless, the prospects of this technology are not as simple as may be suggested by this example, and at the moment, this technology is still rather hypothetical.

A thorium-powered car engine concept is based on the use of the radioactive material known as thorium as fuel. In principle, this engine employed a tiny measure of thorium to release heat through nuclear fission, and the heat was further transformed into electricity to run the car.

Procedural Road Network Made With Unreal Engine 5

Game Developer jourverse, who is currently working on a tutorial series focused on building a traffic system in Unreal Engine 5, shared a demo project file for this procedural road network integrated with vehicle AI for obstacle avoidance, using A* for pathfinding.

The developer explained that both the A* algorithm and the road editor mode are implemented in C++, with no use of neural networks. Vehicle AI operations like spline following, reversing, and performing 3-point turns are handled through Blueprints. The vehicle AI navigates using two paths: the green spline for the main route and the blue spline for obstacle avoidance. The main spline leverages road network nodes to determine the path to the target via A* on FPathNode, which includes adjacent road nodes.

For obstacle detection, the vehicle employs polynomial regression to predict its future position. Upon detecting an obstacle, a grid of sphere traces is generated to map the obstacle’s location, and another A* algorithm is employed to create a path around the obstacle.