Toggle light / dark theme

On Thursday, Tesla CEO Elon Musk unveiled the Tesla Bot, which runs on the same AI used in Tesla’s autonomous vehicles. This surprise reveal was shared at the end of Tesla’s AI Day presentation. Musk revealed very few details about the humanoid robot besides the fact that it is 5″ 8′ and weighs 125 pounds.

The Tesla Bot is to be built from lightweight materials, and its head will be fitted with the autopilot cameras used by Tesla’s vehicles for sensing the environment. The Bot will be operated by Tesla’s Full Self-Driving (FSD) computer.

As Tesla focuses on Artificial Intelligence (AI) upgrades for its electric vehicles, there has also been a focus on the Dojo supercomputer, which is intended to help train the EVs to navigate the streets without human assistance. Musk said that it only made sense to make the robot into a humanoid form and that it is intended to be friendly and help navigate through a world built for humans.

Researchers are studying adding carbon capture technologies to vehicles so that the CO2 can be sequestered or recycled into renewable hydrocarbon fuels.

According to senior researcher of the study; “This technology really doesn’t have any major hurdles to making it work,”


When people talk about how to eliminate vehicles’ carbon dioxide (CO2) emission, often the conversation often focuses on electrifying cars, trucks and buses. Yet cargo and tanker ships, which are responsible for 3% of all CO2 emissions, are rarely a part of the discussion.

Now a Northwestern University research team offers a practical way to make ships CO2 neutral—or even CO2 negative—with CO2-capturing solid oxide fuel cells. After “burning” traditional carbon-based fuels, the fuel cell generates concentrated CO2 that can be stored on-board the ship. From there, the CO2 can either be sequestered or recycled into a renewable hydrocarbon fuel.

In March, the departments of Energy, Interior and Commerce said they were aiming for U.S. offshore wind capacity to hit 30 gigawatts (GW) by 2,030 a hugely optimistic goal that would require thousands of new wind turbines to be installed off the Atlantic, Pacific and Gulf coasts.

With federal support locked in, now it’s up to developers and operators to figure out where it’s safe to install offshore wind farms and pursue permits.

Bedrock, a Richmond, California, start-up, wants to help them map the seafloor using electric autonomous underwater vehicles (e-AUV) that can launch right from the shore.

DP World has completed testing of the Boxbay fully automated container storage system at its Jebel Ali terminal in Dubai, accomplishing more than 63,000 container moves since the facility was commissioned earlier this year.

The facility, which can hold 792 containers at a time, exceeded expectations, delivering faster and more energy-efficient than anticipated, the Dubai-headquartered terminal operator said.

The solar-powered system stores containers in slots in a steel rack up to eleven high. DP World claims Boxbay delivers three times the capacity of a conventional yard in which containers are stacked directly on top of each other, reducing the footprint of terminals by 70% and energy costs by 29%. Boxbay delivered 19.3 moves per hour at each waterside transfer table to the straddle carrier and 31.8 moves per hour at each landside truck crane.

Battery-and carmakers are already spending billions of dollars on reducing the costs of manufacturing and recycling electric-vehicle (EV) batteries — spurred in part by government incentives and the expectation of forthcoming regulations. National research funders have also founded centres to study better ways to make and recycle batteries. Because it is still less expensive, in most instances, to mine metals than to recycle them, a key goal is to develop processes to recover valuable metals cheaply enough to compete with freshly mined ones. “The biggest talker is money,” says Jeffrey Spangenberger, a chemical engineer at Argonne National Laboratory in Lemont, Illinois, who manages a US federally funded lithium-ion battery-recycling initiative, called ReCell.


Reducing the use of scarce metals — and recycling them — will be key to the world’s transition to electric vehicles.

Despite strong support from the FAA, the airline industry, and aerospace companies, the U.S. Senate ceased funding the development of a supersonic airliner in 1971. Two years later, the FAA banned supersonic flight over land, a prohibition that remains to this day.

The Concorde went on to serve various destinations, including some in the United States, flying at supersonic speeds only over water. That continued until 2,003 when British Airways and Air France retired their fleets, together amounting to just 12 aircraft. (Fourteen production aircraft were manufactured, but one was scrapped in 1,994 and another crashed in 2000.)

While the Concorde successfully overcame the technical hurdles standing in the way of supersonic passenger service, it succumbed to economics: The cost of fuel and maintenance was especially high for these planes. A new generation of aeronautical engineers and entrepreneurs are, however, keen to once again take on the technical, environmental, and economic challenges.

Elon Musk has mentioned that the Tesla Cybertruck’s production version would be extremely similar to the all-electric pickup truck’s controversial prototype from 2019. While this may largely be the case, Musk has hinted at some new features that would be included in the production Cybertruck. Apart from updated door handles and rear-wheel steering capabilities, for example, Musk also hinted at “other great things” coming for the vehicle.

A recently published patent application from Tesla has now hinted at a couple more updates that may be coming to the Cybertruck, at least on the design front. The patent, titled “Automotive Glass Structure Having Feature Lines and Related Method of Manufacture,” describes a way to form extremely durable glass structures with aggressive curves and folds. Using such a technique, Tesla stated that it could create components like windshields with very aggressive feature lines that would otherwise not be possible with conventional glass-forming methods.

The patent application’s illustrations showcased how the system would be used in a vehicle such as the Cybertruck. One of the images in the patent featured the far left and right side of the Cybertruck’s windshield having aggressive feature lines that make the all-electric pickup truck even more futuristic and CGI-esque. This is quite different from the windshield used on the prototype Cybertruck, which seemed completely flat.