Menu

Blog

Archive for the ‘transportation’ category: Page 272

Nov 6, 2019

China mulls $10 trillion Earth-moon economic zone

Posted by in categories: economics, transportation

China is mulling of establishing an Earth-moon space economic zone by 2050, with insiders expecting the zone to generate $10 trillion a year.

Bao Weimin, director of the Science and Technology Commission of the China Aerospace Science and Technology Corporation, revealed the ambitious plan at a seminar on space economy on Wednesday, media reported Friday.

In a report on developing earth and moon space, Bao shared his thoughts on the huge economic potential in this field and pledged that the country would study its reliability, cost and flight-style transportation system between the Earth and moon, The Science and Technology Daily reported Friday.

Nov 5, 2019

What’s Next: Vehicles driven by electromagnetic propulsion technology

Posted by in categories: energy, transportation

When we think about eco-friendly vehicles, most of the time we think about electric and hybrid vehicles. At other times, we might even go as far as coming up with vehicles that operate on bio, solar or wind energy. However, this is not all. There are innovations that are breaking all the barriers of thought and technology. One such innovation is electromagnetic propulsion technology. We are seeing many vehicle designs that are utilizing it. Therefore, it would be no wonder if it becomes mainstream in our distant future.

Vehicles driven by electromagnetic propulsion technology

Continue reading “What’s Next: Vehicles driven by electromagnetic propulsion technology” »

Nov 5, 2019

Tesla Model 3 Performance gets stunning street-legal racing treatment from Unplugged

Posted by in categories: law, sustainability, transportation

“Unplugged Performance thoroughly reworks the suspension with a custom race valved adjustable coilover suspension kit, along with billet adjustable front upper control arms, billet adjustable rear camber and toe arms and a beefier 3 way adjustable front/rear sway bar set with uprated bushings. The highly adjustable suspension and handling capabilities pair with massive 6 piston 15.5” uprated brakes and competition brake pads. Unplugged Performance 20” wheels shod with Michelin Cup 2 tires are then fitted. The wheels are custom machined out of 6061-T6 billet APP forgings, the same forgings used by Koenigsegg and Lamborghini, and every set is FEA optimized and specifically engineered to the specific build’s desired spec and use. Wheel weights range from 19.6–21.0lbs in 20” with tire sizings up to 305mm wide.”


While Tesla is working on a track-focused Model S, the Model 3 Performance is getting its own street-legal racing treatment from Unplugged Performance.

Continue reading “Tesla Model 3 Performance gets stunning street-legal racing treatment from Unplugged” »

Nov 4, 2019

New Battery Lets Electric Cars Go 200 Miles on a 10-Minute Charge

Posted by in categories: energy, sustainability, transportation

While some high – end electric vehicles ( like the most expensive Teslas ) are starting to approach those kinds of ranges, it still takes around 50 minutes for a full charge using the most powerful superchargers available. That’s a long time to hang around if you’re doing a cross-country trip that requires multiple pit stops.

The result is range anxiety, where people worry about running out of juice and facing delays due to the long time it takes to recharge their car s. There are two ways to tackle the problem: building higher-capacity batteries or charging existing ones faster.

Bigger batteries are a tricky problem, because vehicles face a balancing act between weight an d capacity. After a certain point the extra weight of batteries cancels out the boost in power they provide. There’s plenty of work into batteries with better energy density—how much charge they can hold for a specific weight—but there aren’t any major breakthroughs on the horizon.

Nov 4, 2019

Augmented Reality Aircraft

Posted by in categories: augmented reality, transportation

Read more

Nov 4, 2019

Scientists develop industrial-strength adhesive which can be unstuck in magnetic field

Posted by in categories: chemistry, mobile phones, sustainability, transportation

Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.

Currently, items like mobile phones, microwaves and car dashboards are assembled using adhesives. It is a quick and relatively cheap way to make products but, due to problems dismantling the various materials for different recycling methods, most of these products will be destined for landfill.

However, Dr. Barnaby Greenland, Lecturer in Medicinal Chemistry, working in conjunction with Stanelco RF Technologies Ltd and Prof Wayne Hayes at the University of Reading, may have found a solution.

Nov 2, 2019

Genius, 14, wins $25,000 for car design that would install cameras to make blind spots nonexistent

Posted by in categories: engineering, mathematics, transportation

This is amazing, it will save many lives!


A 14-year-old Pennsylvania girl has come up with an innovative way to get rid of blind spots before she can even legally get behind the wheel.

Continue reading “Genius, 14, wins $25,000 for car design that would install cameras to make blind spots nonexistent” »

Nov 1, 2019

Japan proposes wooden cars made of plant-based cellulose nanofibers

Posted by in categories: materials, transportation

One-fifth the weight of steel but five times the strength, plant-based cellulose nanofiber (CNF) offers carmakers the opportunity to build strong, lightweight cars while sustainably removing as much as 2,000 kg (4,400 lb) of carbon from the car’s life cycle.

We’ve written before about the extraordinary properties of CNFs, which were last year demonstrated to be stronger than spider silk. Made essentially from wood, but chipped, pulped and boiled in chemicals to remove lignin and hemicellulose, it’s a highly condensed, lightweight and incredibly strong material that’s also very recyclable.

It can also, as it turns out, be used in manufacturing, where it can be injection molded as a resin-reinforced slurry to form complex shapes – and the Japanese Ministry of the Environment sees it as a potential way for automakers to reduce weight and sustainably reduce their carbon footprint.

Oct 31, 2019

New Battery Could Charge an Electric Car in 10 Minutes

Posted by in categories: sustainability, transportation

A new design for litium-ion batteries could potentially bring charging durations near the time needed to gas up a traditional vehicle.

Oct 30, 2019

Dielectric metasurfaces for next-generation holograms

Posted by in categories: computing, holograms, information science, nanotechnology, particle physics, transportation

Metasurfaces are optically thin metamaterials that can control the wavefront of light completely, although they are primarily used to control the phase of light. In a new report, Adam C. Overvig and colleagues in the departments of Applied Physics and Applied Mathematics at the Columbia University and the Center for Functional Nanomaterials at the Brookhaven National Laboratory in New York, U.S., presented a novel study approach, now published on Light: Science & Applications. The simple concept used meta-atoms with a varying degree of form birefringence and angles of rotation to create high-efficiency dielectric metasurfaces with ability to control optical amplitude (maximum extent of a vibration) and phase at one or two frequencies. The work opened applications in computer-generated holography to faithfully reproduce the phase and amplitude of a target holographic scene without using iterative algorithms that are typically required during phase-only holography.

The team demonstrated all-dielectric holograms with independent and complete control of the amplitude and phase. They used two simultaneous optical frequencies to generate two-dimensional (2-D) and 3D holograms in the study. The phase-amplitude metasurfaces allowed additional features that could not be attained with phase-only holography. The features included artifact-free 2-D holograms, the ability to encode separate phase and amplitude profiles at the object plane and encode intensity profiles at the metasurface and object planes separately. Using the method, the scientists also controlled the surface textures of 3D holographic objects.

Light waves possess four key properties including amplitude, phase, polarization and optical impedance. Materials scientists use metamaterials or “metasurfaces” to tune these properties at specific frequencies with subwavelength, spatial resolution. Researchers can also engineer individual structures or “meta-atoms” to facilitate a variety of optical functionalities. Device functionality is presently limited by the ability to control and integrate all four properties of light independently in the lab. Setbacks include challenges of developing individual meta-atoms with varying responses at a desired frequency with a single fabrication protocol. Research studies previously used metallic scatterers due to their strong light-matter interactions to eliminate inherent optical losses relative to metals while using lossless dielectric platforms for high-efficiency phase control—the single most important property for wavefront control.