Toggle light / dark theme

Atmospheric water generators can save millions of lives due to new drought conditions even bringing water from air in the desert climates.


  • Water scarcity continues to be a pervasive global challenge, cutting across developed and emerging markets, climates and socio-political dynamics.
  • Atmospheric water generation (AWG) technology is a promising emergency solution that can immediately generate drinkable water using moisture in the air.
  • Distribution of atmospheric water generation technology to communities in need can serve as an effective stopgap measure for municipalities facing immediate clean water shortages.

The statistics underpinning water scarcity are dire and noteworthy – approximately 770 million people lack access to clean water. That is one in ten people on the planet. The average woman in rural Africa walks 6 kilometres (about 3.7 miles) daily to haul 40 pounds of water.

The pervasive nature of the global water crisis, however, is such that it isn’t contained to developing parts of the world. In California, for example, over 2 million people use private wells that access groundwater. However, due to drought conditions, excessive industrial pumping of aquifers and, more recently, deeper drilling of industrial wells, local communities are having an increasingly hard time accessing adequate water. The state’s farms and cities rely on underground aquifers for nearly 40% of their water and this rises in dry years. Nearly 90% of Californians draw on groundwater for part of their water supply.

Land subsidence is overlooked as a hazard in cities, according to scientists from the University of East Anglia (UEA) and Virginia Tech. Writing in the journal Science, Prof Robert Nicholls of the Tyndall Center for Climate Change Research at UEA and Prof Manoochehr Shirzaei of Virginia Tech and United Nations University for Water, Environment and Health, Ontario, highlight the importance of a new research paper analyzing satellite data that accurately and consistently maps land movement across China.

Cheaper electric vehicles are on the way, and Kia believes it has an advantage. With its own “secret sauce,” Kia is moving to launch a series of affordable EVs in the US.

“We’re ahead of most, and we’re trying to rush out ahead because our technology will be more evolved,” Kia America COO Steve Center told Automotive News.

Kia revealed a new range of low-cost EVs during its first annual EV Day in October, including the EV2, EV3, EV4, and EV5.

Researchers at Aalto University have discovered a new force acting on water droplets moving over superhydrophobic surfaces like black silicon by adapting a novel force measurement technique to uncover the previously unidentified physics at play. This force, identified as air-shearing, challenges previous understandings and suggests modifications in the design of these surfaces to reduce drag, potentially improving their efficiency and application in various fields.

Microscopic chasms forming a sea of conical jagged peaks stipple the surface of a material called black silicon. While it’s commonly found in solar cell tech, black silicon also moonlights as a tool for studying the physics of how water droplets behave.

Black silicon is a superhydrophobic material, meaning it repels water. Due to water’s unique surface tension properties, droplets glide across textured materials like black silicon by riding on a thin air-film gap trapped beneath. This works great when the droplets move slowly—they slip and slide without a hitch.

There’s a reason airlines won’t let you put your laptop in your checked luggage; the lithium-ion battery poses a serious fire hazard. But why? Lithium is incredibly reactive.

For instance, pure lithium violently interacts with seemingly innocuous water, releasing heat and forming highly flammable hydrogen. This reactivity, however, is exactly why lithium makes a great material for batteries, and why it is a critical mineral for the green energy transition.

Lithium-ion batteries are widely used in electric vehicles. Plus, they can store energy produced by renewable resources like solar and wind.