Toggle light / dark theme

Full(erene) potential: Adding specific molecules to ‘trap’ charge carriers in semiconducting polymers

In what could be called a classic “Eureka” moment, UC Santa Barbara materials researchers have discovered a simple yet effective method for mastering the electrical properties of polymer semiconductors. The elegant technique allows for the efficient design and manufacture of organic circuitry (the type found in flexible displays and solar cells, for instance) of varying complexity while using the same semiconductor material throughout.

“It’s a different strategy by which you can take a material and change its properties,” said Guillermo Bazan, a professor of chemistry and at UCSB. With the addition of fullerene or copper tetrabenzoporphyrin (CuBP) molecules in strategic places, the charge carriers in semiconducting materials—negative electrons and positive “holes”—may be controlled and inverted for better device performance as well as economical manufacture. The discovery is published in a pair of papers that appear in the journals Advanced Functional Materials and Advanced Electronic Materials.

In the realm of , device functionality depends on the movement of the appropriate charge carriers across the material. There have been many advances in the synthesis of high-mobility, high-performance materials, said lead author Michael Ford, graduate student in materials, but the fine control of the electrons and holes is what will allow these sophisticated polymers to reach their full potential.

Scientists Have Turned Cooking Oil Into a Material 200 Times Stronger Than Steel

Graphene cooking oil?


In Brief

  • Researchers have discovered a way to make soybean oil into the super-strong material graphene. The material has a wide variety of potential uses and can revolutionize electronics.
  • The material could be used to make cell phone batteries last 25 percent longer, make more effective solar cells, and even filter fuel out of air.

Researchers have found a way to turn cheap, everyday cooking oil into the wonder material graphene – a technique that could greatly reduce the cost of making the much-touted nanomaterial.

Graphene is a single sheet of carbon atoms with incredible properties – it’s 200 times stronger than steel, harder than diamond, and incredibly flexible. Under certain conditions, it can even be turned into a superconductor that carries electricity with zero resistance.

Quantum RAM: Modelling the big questions with the very small

Nice write up. What is interesting is that most folks still have not fully understood the magnitude of quantum and how as well as why we will see it as the fundamental ingredient to all things and will be key in our efforts around singularity.


When it comes to studying transportation systems, stock markets and the weather, quantum mechanics is probably the last thing to come to mind. However, scientists at Australia’s Griffith University and Singapore’s Nanyang Technological University have just performed a ‘proof of principle’ experiment showing that when it comes to simulating such complex processes in the macroscopic world quantum mechanics can provide an unexpected advantage.

Griffith’s Professor Geoff Pryde, who led the project, says that such processes could be simulated using a “quantum hard drive”, much smaller than the required for conventional simulations.

“Stephen Hawking once stated that the 21st century is the ‘century of complexity’, as many of today’s most pressing problems, such as understanding climate change or designing transportation system, involve huge networks of interacting components,” he says.

Solar Power Has Officially Become the Cheapest Source for New Energy

When it comes to obtaining new energy, solar energy now costs less than fossil fuels, according to a report by the World Economic Forum (WEF). Data from Bloomberg New Energy Finance (BNEF) also show decreased prices, with the mean price of solar power in about 60 countries dropping to $1.65 million per megawatt, closely followed by wind at $1.66 million per megawatt.

Michael Drexler, Head of Long Term Investing, Infrastructure and Development at the World Economic Forum, found the downturn in prices to be an encouraging sign.

“Renewable energy has reached a tipping point—it now constitutes the best chance to reverse global warming. Solar and wind have just become very competitive, and costs continue to fall. It is not only a commercially viable option, but an outright compelling investment opportunity with long-term, stable, inflation-protected returns.”

MIT’s Food Computers Set the Stage for Open Source Agriculture

Most of us probably don’t think too much about the foodstuffs we buy in the supermarket. But behind the scenes, today’s food production system relies on a centralized, industrial-scale supply chain that’s still dependent upon soil-based agriculture for the majority of our food crops.

In many instances, that means that food has to travel long distances from farm to table, meaning that food has lost much of its freshness and nutritional value by the time it reaches your table. There’s also a growing awareness that this model isn’t sustainable: the pressures of increasing urbanization and loss of arable land, rising populations and the increased frequency of extreme weather events like droughts and floods — brought on by climate change — means that slowly but surely, we are going to have to change the way we grow our food.

There are some indications of this shift: the appearance of urban rooftop farms, an explosion of interest in automated hydroponic systems. The problem with all these systems is that their platforms are proprietary, and the lack of a common platform between them means these won’t necessarily scale up.

Choosing a New System Architecture

The food retail, foodservice and industrial cooling industries are in the midst of a momentous transition in refrigeration system architectures. Regulations are driving the need to implement sustainable systems with options growing exponentially. Emerson’s natural refrigerant expert, Andre Patenaude, provides advice on the best alternatives to future proof your system.

To get to what many call the “end game” of achieving compliance and meeting corporate sustainability objectives, more businesses are looking at systems based on natural refrigerants to help them achieve these goals.

The term “natural refrigerant” refers to substances that naturally occur in the environment. Unlike the synthetic refrigerants that have commonly been used in refrigeration applications — including hydrofluorocarbons (HFCs) and chlorofluorocarbons (CFCs) — ammonia (NH3 or refrigerant name R-717), propane (refrigerant name R-290) and carbon dioxide (CO2 or refrigerant name R-744) are three naturally occurring refrigerants that pose very little threat to the environment.

Who’s Responsible If An Open Source Software Powered Self-Driving Vehicle Kills Someone?

Who is responsible if a self-driving car crashes and causes property damages, physical harm or even death? Autonomous vehicle legislation is still very much in its infancy though it will certainly be an evolutionary process over the years. Corporations such as Tesla and Volvo have publicly stated that they will take responsibility for any faults in their software. However, Comma.ai’s CEO George Hotz (geohot) has stated that he is not responsible for any accidents caused by those who download his free self-driving vehicle software.

A Swedish Billionaire Will Award $5 Million For Reimagining Global Governance

Yes, you read that right. The Global Challenges Foundation, founded by the Swedish billionaire László Szombatfalvy, has launched an international competition in order to find a better system for world governance. As Szombatfalvy writes in a letter published on the Foundation’s website:

The greatest threats we face today transcend national boundaries; they therefore need to be addressed jointly by all countries based on an increased realization of our mutual dependence. […] Our current international system – including but not limited to the United Nations — was set up in another era following the Second World War. It is no longer fit for purpose to deal with 21st century risks that can affect people anywhere in the world. We urgently need fresh new thinking in order to address the scale and gravity of today’s global challenges, which have outgrown the present system’s ability to handle them.

The Global Challenges Prize 2017: A New Shape is calling on individuals, groups of individuals, universities, companies or associations from anywhere in the world to submit proposals outlining an alternative world governance model – either by revising the present UN system, or by proposing completely new forms of governance. The new model should be able to effectively address some of the most pressing global problems (like climate change, population growth, extreme poverty) by making it possible for nations to make collectively binding, long-term decisions that take into account the interests of all those affected, including future generations.

/* */