Toggle light / dark theme

It would be interesting to see how this could be used in solar panels that can adjust themselves to capture the best/ high quality sun rays;


Written by AZoM

A team of researchers from Eindhoven University of Technology (TU/e) and Humboldt University in Berlin showcased a thin layer of plastic material in the Nature Communications journal, which has the capacity to move spontaneously under the influence of daylight. The researchers feel that this flexible plastic is appropriate as a self-cleaning surface, for example it can be used in solar cells.

Read more

A huge vertical farm—where crops are planted, grown, and harvested all with neither sun nor soil—is being built in New Jersey. When it’s finished, it will be the largest one in the world.

You can see one of the (smaller) existing factories from AeroFarm, on which the new one will be modeled, above in this video from Seeker Stories. Nothing they are doing or planning is really new—people have been growing vegetables indoors under LED lights, minus the soil, for a very long time now. Even the factory spin is nothing new. Japan’s Mirai factory has been doing something similar on a slightly smaller scale for years now. What is interesting here, though, is just how big this place is.

Read more

Scientists from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered a possible secret to dramatically boosting the efficiency of perovskite solar cells hidden in the nanoscale peaks and valleys of the crystalline material.

Solar cells made from compounds that have the crystal structure of the mineral perovskite have captured scientists’ imaginations. They’re inexpensive and easy to fabricate, like organic solar cells. Even more intriguing, the efficiency at which perovskite solar cells convert photons to electricity has increased more rapidly than any other material to date, starting at three percent in 2009 — when researchers first began exploring the material’s photovoltaic capabilities — to 22 percent today. This is in the ballpark of the efficiency of silicon solar cells.

Now, as reported online July 4, 2016 in the journal Nature Energy, a team of scientists from the Molecular Foundry and the Joint Center for Artificial Photosynthesis, both at Berkeley Lab, found a surprising characteristic of a perovskite solar cell that could be exploited for even higher efficiencies, possibly up to 31 percent.

Read more

Joshua Brown, 40, believed in the power of engineering. He was a former Navy SEAL, a technology consultant, and a Tesla fan. He had posted YouTube videos of himself driving a Tesla Model S on autopilot, taking his hands off the wheel to show how the car could avoid a collision on its own. He had nicknamed his car “Tessy.”

Read more

The driver of a Tesla car died in Florida in May after colliding with a lorry.

Under scrutiny is Tesla’s Autopilot feature, which automatically changes lanes and reacts to traffic.

In a statement, Tesla said it appeared the Model S car was unable to recognise “the white side of the tractor trailer against a brightly lit sky” that had driven across the car’s path.


Tesla is being investigated following a crash in which a man died after colliding with a lorry in Florida.

Read more

North american leaders set goals to mitigate climate change.

President Obama, Prime Minister Trudeau of Canada and President Peña Nieto of Mexico met in Ottawa on Wednesday, agreeing on goals and targets to lower emissions, raise efficiency and bring better protections to the environment.

Renewables, nuclear and carbon capture and storage technology will be on the table to help North Americans meet their goal of 50 percent clean, emissions-free energy by 2025.

Read more

Q-Dot demand in Healthcare is predicted to be high.

http://embedded-computing.com/news/rising-quantum-dots-market/#


Quantum Dots Market is driven by increasing demand for energy efficient displays and lighting solutions, North America accounted for largest quantum dots market share, use of quantum dots in solar cells and VLSI design is expected to open new possibilities for quantum dots market.

Quantum dots are semiconducting nanoparticles that range from 1nm to 10nm diameter in size and demonstrate quantum mechanical properties. The peculiarity of quantum dots is that they have ability to unite their semiconductor properties with those of nanomaterials. In addition, tunable nanocrystal size and superior optical properties have made quantum dots attractive semiconducting material for variety of applications in the field of healthcare, optoelectronics, solar energy, and security among others.

Read more

Deep inside the electronic devices that proliferate in our world, from cell phones to solar cells, layer upon layer of almost unimaginably small transistors and delicate circuitry shuttle all-important electrons back and forth.

It is now possible to cram 6 million or more transistors into a single layer of these chips. Designers include layers of glassy between the electronics to insulate and protect these delicate components against the continual push and pull of heating and cooling that often causes them to fail.

A paper published today in the journal Nature Materials reshapes our understanding of the materials in those important protective layers. In the study, Stanford’s Reinhold Dauskardt, a professor of materials science and engineering, and doctoral candidate Joseph Burg reveal that those respond very differently to compression than they do to the tension of bending and stretching. The findings overturn conventional understanding and could have a lasting impact on the structure and reliability of the myriad devices that people depend upon every day.

Read more

(credit: WEF)

The World Economic Forum’s annual list of this year’s breakthrough technologies, published today, includes “socially aware” openAI, grid-scale energy storage, perovskite solar cells, and other technologies with the potential to “transform industries, improve lives, and safeguard the planet.” The WEF’s specific interest is to “close gaps in investment and regulation.”

“Horizon scanning for emerging technologies is crucial to staying abreast of developments that can radically transform our world, enabling timely expert analysis in preparation for these disruptors. The global community needs to come together and agree on common principles if our society is to reap the benefits and hedge the risks of these technologies,” said Bernard Meyerson, PhD, Chief Innovation Officer of IBM and Chair of the WEF’s Meta-Council on Emerging Technologies.

The list also provides an opportunity to debate human, societal, economic or environmental risks and concerns that the technologies may pose — prior to widespread adoption.

Read more