Toggle light / dark theme

Self-driving car testing in California is becoming a badge of progress for companies working in the space. Only 17 companies in total have the honor, including two just added to the list: Wheego Electric Cars, and Valeo North America.

The Wall Street Journal reports that both these new companies now have approval to run tests with a single vehicle each, and four drivers per team. That might not sound like much, but it’s a foot in the door, and membership in the club is itself somewhat testament to how much the companies have already accomplished, since the other members include major carmakers like Tesla, Cruise (which got its license before being acquired by GM), promising startup Drive.ai, and Baidu, to name a few.

The new members are interesting additions: Wheego is an electric carmaker which got its start taking Chinese-Built cars, outfitting them with battery’s and electric motors in the U.S. and putting them on the road. The company now says it builds electric vehicles designed “for a global market,” and focuses on the benefits of connected tech in making vehicles aware of their surroundings.

Read more

Lee Teschler

Executive Editor

@dw_LeeTeschler

The days of launching complete satellites and similar extraterrestrial objects into orbit may be numbered. Instead, orbiting robots will construct them in space. The basic principles of this concept are being perfected by a company called Tethers Unlimited Inc. in Bothell Wash. under a NASA contract. Tethers’ SpiderFab: Architecture for On-Orbit Construction of Kilometer-Scale Apertures, will enable on-orbit fabrication of super-large objects such as antennas, solar panels, trusses, and other multifunctional structures. In ten years, Tethers expects to perfect the technology to a degree that will make possible self-fabricating, self-assembling satellites.

Read more

Batteries in smart phones and other portable electronics often die at inopportune times. Carrying a spare battery is one solution. As an alternative, researchers have tried to create fibers to incorporate in clothing that would power these devices. However, many of these fibers can’t withstand clothing manufacturing, especially weaving and cutting.

Now, in the journal ACS Nano, scientists report the first fibers suitable for weaving into tailorable textiles that can capture and release solar energy.

To collect solar power, Wenjie Mai, Xing Fan and colleagues created two different types of fibers. One contained titanium or a manganese-coated polymer along with zinc oxide, a dye and an electrolyte. These fibers were then interlaced with copper-coated polymer wires to create the solar cell section of the textile. To store power, the researchers developed a second type of fiber. This one was made of titanium, , a thin carbon shell to prevent oxidation and an electrolyte. These were woven with cotton yarn.

Read more

When kids learn about the planet’s water cycle, they’re taught a simple concept: our atmosphere is filled with water vapour that has evaporated from the bodies of liquid water we see around us. When the vapour’s temperature gets low enough, it gets turned back into water.

The presence of that vapour becomes especially apparent in the summer when droplets collect on glasses of ice water and air conditioning units drip onto unsuspecting passersby.

An Israeli company called Water-Gen does not think of that condensation as a byproduct; instead, it has built machines specifically designed to create and harvest as much condensation as possible.

Read more

Phototactic behaviour directs some bacteria towards light and others into darkness: This enables them to utilize solar energy as efficiently as possible for their metabolism, or, otherwise, protects them from excessive light intensity. A team of researchers headed by Clemens Bechinger from the Max Planck Institute for Intelligent Systems and the University of Stuttgart, as well as colleagues from the University of Düsseldorf have now found a surprisingly simple way to direct synthetic microswimmers towards light or darkness. Their findings could eventually lead to minuscule robots that seek out and treat lesions in the human body.

Read more

In Brief.

Tesla and SolarCity are working on making their cars capable of powering a household, and even the entire grid. Using vehicle-to-grid technology, Tesla may be on to something here, and its more than just saving on your electric bills.

Earlier this year, Elon Musk bought SolarCity for at least $2.6 billion, merging the solar engineering company with Tesla. Since then, both have been busy working on a few things. Perhaps the most interesting of these is the promise to cut down on your household electric bill.

Read more

In a discovery that could have profound implications for future energy policy, Columbia scientists have demonstrated it is possible to manufacture solar cells that are far more efficient than existing silicon energy cells by using a new kind of material, a development that could help reduce fossil fuel consumption.

The team, led by Xiaoyang Zhu, a professor of Chemistry at Columbia University, focused its efforts on a new class of solar cell ingredients known as Hybrid Organic Inorganic Perovskites (HOIPs).

Their results, reported in the prestigious journal Science, also explain why these new materials are so much more efficient than traditional solar cells—solving a mystery that will likely prompt scientists and engineers to begin inventing new solar materials with similar properties in the years ahead.

Read more