Toggle light / dark theme

With NASA’s historic solar-powered helicopter flight over the barren slopes of Mars’ Jezero Crater, Leonardo da Vinci and Igor Sikorsky also deserve credit along with the Wright brothers for enabling this astounding bit of off-world powered, controlled flight. Da Vinci made one of the earliest drawings of a rotor-driven aircraft and Sikorsky built the U.S.’ first commercially viable helicopter.

Even though Orville and Wilbur Wright get credit for making the first powered, controlled aircraft flight at Kitty Hawk, North Carolina in 1903, the vertical flight of helicopters is markedly different. Thus, the first test flight of NASA’s Ingenuity helicopter is all the more astounding in no small part because Mars’ atmosphere is only one percent that of Earth.

“While these two iconic moments in aviation history may be separated by time and 173 million miles of space, they now will forever be linked,” NASA Associate Administrator for Science Thomas Zurbuchen said in a statement. “As an homage to the two innovative bicycle makers from Dayton, this first of many airfields on other worlds will now be known as Wright Brothers Field, in recognition of the ingenuity and innovation that continue to propel exploration.”

There are several key technologies converging on an inevitable effect, namely a dramatic, explosive increase in human population. Currently around 40% of Earth’s total land area is dedicated to agricultural production to feed seven billion people, but, interestingly, while the human population will increase, the land area required to sustain this population will decrease, approaching zero land area to sustain a trillion human lives. In this era, bulk elements such as gold will have no value, since they will be so easy to produce by fusion separation of elements from bulk rock. Instead, value will be attached to biological material and, most importantly, new technologies themselves.

The several key emerging technologies that make this state of affairs unstoppable are listed along with aspects of their impact:

1) Most important is fusion energy, an unlimited, scalable energy, with no special fuel required to sustain it. This will allow nearly all agriculture to be contained in underground “vertical farm” buildings, extending thousands of feet downwards. Cheap artificially-lighted, climate-controlled environments will allow the maximum efficiency for all food crops. Thus, agriculture will take up close to zero surface area, largely produced underground on Earth or the Moon.

2) Crispr-gene edited foods, allowing the transformation of thousands of currently inedible plants into new types of fruits, vegetables and cereals, while also allowing diversity of currently-existing ones. Everything people eat has been genetically modified by thousands of years of human cultivation; that modification will take place over several years instead of thousands.

3) Acellular agriculture, where yeasts are bioengineered to produce milk and other proteins without any live mammals. Products using this method began to enter the market in 2020.

NASA hopes to score a 21st-century Wright Brothers moment on Monday as it attempts to send a miniature helicopter buzzing over the surface of Mars in what would be the first powered, controlled flight of an aircraft on another planet.

Landmark achievements in science and technology can seem humble by conventional measurements. The Wright Brothers’ first controlled flight in the world of a motor-driven airplane, near Kitty Hawk, North Carolina, in 1903 covered just 120 feet (37 meters) in 12 seconds.

A modest debut is likewise in store for NASA’s twin-rotor, solar-powered helicopter Ingenuity.

Sorry, we’re having trouble playing this video.


With an ever-increasing global population and rising urbanization, creating safe, resilient and sustainable cities is right at the top of the green agenda.

The United Nations included this mission among its 17 Sustainable Development Goals, which together form a blueprint for collectively addressing the challenges the world faces.

Uber customers will now be able to request an electric vehicle for the first time as the ride-hailing app looks to become fully electric by 2025.

Launching today Uber Green will give passengers in Zone 1 the opportunity to request an electric vehicle at no extra cost.

The journey will cost the same as a regular UberX journey on the app and drivers will receive a higher fare per trip.

There is no cheaper way to generate electricity today than with the sun. Power plants are currently under construction in sunny locations that will supply solar electricity for less than 2 cents per kilowatt hour. Solar cells available on the market based on crystalline silicon make this possible with efficiencies of up to 23 percent. Therefore they hold a global market share of around 95 percent. With even higher efficiencies of more than 26 percent, costs could fall further. An international working group led by photovoltaics researchers from Forschungszentrum Jülich now plan to reach this goal with a nanostructured, transparent material for the front of solar cells and a sophisticated design. The scientists report on their success of many years of research in the renowned scientific journal Nature Energy.

Silicon have been steadily improved over the past decades and have already reached a very high level of development. However, the disturbing effect of recombination still occurs after the absorption of sunlight and the photovoltaic generation of electrical charge carriers. In this process, negative and positive charge carriers that have already been generated combine and cancel each other out before they could be used for the flow of . This effect can be countered by special materials that have a special property—passivation.

“Our nanostructured layers offer precisely this desired passivation,” says Malte Köhler, former Ph.D. student and first author from the Jülich Institute for Energy and Climate Research (IEK-5), who has since received his doctorate. In addition, the ultra-thin layers are transparent—so the incidence of light is hardly reduced—and exhibit high electrical conductivity.

The new technique, which can easily be added to current membrane-based electrodialysis desalination processes, removes nearly 100% of these toxic metals, producing a pure brine along with pure water and isolating the valuable metals for later use or disposal.


University of California, Berkeley, chemists have discovered a way to simplify the removal of toxic metals. like mercury and boron. during desalination to produce clean water, while at the same time potentially capturing valuable metals, such as gold.