Toggle light / dark theme

Scientists develop a low-cost, highly efficient technique that uses solar energy to remove salt from seawater, producing safe drinking water.

Despite the vast amount of water on Earth, most of it is nonpotable seawater. Freshwater accounts for only about 2.5% of the total, so much of the world experiences serious water shortages.

In AIP Advances, by AIP Publishing, scientists in China report the development of a highly efficient desalination device powered by solar energy. The device consists of a titanium-containing layer, TiNO, or titanium nitride oxide, capable of absorbing solar energy. The TiNO is deposited on a special type of paper and foam that allows the solar absorber to float on seawater.

According to the university, the system focuses on the “thermal recovery and post-treatment of glass fibres” from glass-reinforced polymer composite scrap, with the end result “near-virgin quality glass fibres.” The idea is that, using this system, the composite waste could be re-used.


The aim is to scale-up and commercialize a process developed by team at the University of Strathclyde, in Scotland.

While biodegradable plastics have been touted as a solution to plastic pollution, in practice they don’t work as advertised.

“Biodegradability does not equal compostability,” Ting Xu, study coauthor and UC Berkeley polymer scientist, told Science News.

But by studying nature, Xu and her team have developed a process that actually breaks down biodegradable plastics with just heat and water in a period of weeks. The results, published in Nature on Wednesday, could be game-changing for the plastic pollution problem.

OEC promoting STEM education in Africa.


Remember the project where Bill Gates wanted to cover the sun to cool the Earth? Well, this summer, the tests will begin. According to The Times, a large balloon will soon be launched in Sweden that will spew out of calcium carbonate, which is essentially “chalk dust.”

The Controlled Stratospheric Perturbation Experiment (SCoPEx) wants to prove that the release of this dust into the stratosphere could eventually divert some of the sun’s energy and lower the temperatures of our planet.

Historical fact

The European Union is finalizing plans for an ambitious “digital twin” of planet Earth that would simulate the atmosphere, ocean, ice, and land with unrivaled precision, providing forecasts of floods, droughts, and fires from days to years in advance. Destination Earth, as the effort is called, won’t stop there: It will also attempt to capture human behavior, enabling leaders to see the impacts of weather events and climate change on society and gauge the effects of different climate policies.

“It’s a really bold mission, I like it a lot,” says Ruby Leung, a climate scientist at the U.S. Department of Energy’s (DOE’s) Pacific Northwest National Laboratory. By rendering the planet’s atmosphere in boxes only 1 kilometer across, a scale many times finer than existing climate models, Destination Earth can base its forecasts on far more detailed real-time data than ever before. The project, which will be described in detail in two workshops later this month, will start next year and run on one of the three supercomputers that Europe will deploy in Finland, Italy, and Spain.

Destination Earth rose out of the ashes of Extreme Earth, a proposal led by the European Centre for Medium-Range Weather Forecasts (ECMWF) for a billion-euro flagship research program. The European Union ultimately canceled the flagship program, but retained interest in the idea. Fears that Europe was falling behind China, Japan, and the United States in supercomputing led to the European High-Performance Computing Joint Undertaking, an €8 billion investment to lay the groundwork for eventual “exascale” machines capable of 1 billion billion calculations per second. The dormant Extreme Earth proposal offered a perfect use for such capacity. “This blows a soul into your digital infrastructure,” says Peter Bauer, ECMWF’s deputy director of research, who coordinated Extreme Earth and has been advising the European Union on the new program.

NASA has logged another extraterrestrial first on its latest mission to Mars: converting carbon dioxide from the Martian atmosphere into pure, breathable oxygen, the U.S. space agency said on Wednesday.

The unprecedented extraction of oxygen, literally out of thin air on Mars, was achieved Tuesday by an experimental device aboard Perseverance, a six-wheeled science rover that landed on the Red Planet Feb. 18 after a seven-month journey from Earth. read more

In its first activation, the toaster-sized instrument dubbed MOXIE, short for Mars Oxygen In-Situ Resource Utilization Experiment, produced about 5 grams of oxygen, equivalent to roughly 10 minutes’ worth of breathing for an astronaut, NASA said.

The milestone, which the MOXIE instrument achieved by converting carbon dioxide into oxygen, points the way to future human exploration of the Red Planet.

The growing list of “firsts” for Perseverance, NASA ’s newest six-wheeled robot on the Martian surface, includes converting some of the Red Planet’s thin, carbon dioxide-rich atmosphere into oxygen. A toaster-size, experimental instrument aboard Perseverance called the Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) accomplished the task. The test took place April 20, the 60th Martian day, or sol, since the mission landed on February 18.

While the technology demonstration is just getting started, it could pave the way for science fiction to become science fact – isolating and storing oxygen on Mars to help power rockets that could lift astronauts off the planet’s surface. Such devices also might one day provide breathable air for astronauts themselves. MOXIE is an exploration technology investigation – as is the Mars Environmental Dynamics Analyzer (MEDA) weather station – and is sponsored by NASA’s Space Technology Mission Directorate (STMD) and Human Exploration and Operations Mission Directorate.

Oxygen isn’t just the stuff we breathe. Rocket propellant depends on oxygen, and future explorers will depend on producing propellant on Mars to make the trip home.


The instrument, called the Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE), is a technology demonstration that could eventually be scaled up to produce enough propellant to enable a crew of astronauts to take off from the surface of the Red Planet.

“This is a critical first step at converting carbon dioxide to oxygen on Mars,” said Jim Reuter, associate administrator of NASA’s Space Technology Mission Directorate (STMD), in a statement. “MOXIE has more work to do, but the results from this technology demonstration are full of promise as we move toward our goal of one day seeing humans on Mars.”

“Oxygen isn’t just the stuff we breathe,” he added. “Rocket propellant depends on oxygen, and future explorers will depend on producing propellant on Mars to make the trip home.”