Toggle light / dark theme

Check out this solar + green hydrogen mobile nanogrid with a level 2 EV charger

Jackson, Michigan-based Sesame Solar is today unveiling what it claims is the world’s first fully renewable mobile nanogrid – that’s a small microgrid – that runs on solar and green hydrogen.

The nanogrid’s solar array is electronically unfolded, and it’s ready to start generating power within 15 minutes. The company claims it can be set up by a single person.

Depending on the model, as the nanogrid is modular and customizable, Sesame Solar’s turnkey nanogrids can produce between 3 and 20 kW of solar power, with total battery storage of 15 to 150 kWh. It’s designed to meet peak and average use and provide uninterrupted sustainable power. The company says the nanogrids are shipped within 45 days after the order is placed and claims they’re good for 20 years. The average cost is around $150,000.

MEDUSA‘ dual robot’ drone flies and dives to collect aquatic data

Researchers at Imperial College London have developed a new dual drone that can both fly through air and land on water to collect samples and monitor water quality. The researchers developed a drone to make monitoring drones faster and more versatile in aquatic environments.

The ‘dual robot’ drone, tested at Empa and the aquatic research institute Eawag in Switzerland, has successfully measured water in lakes for signs of microorganisms and algal blooms, which can pose hazards to human health, and could in the future be used to monitor climate clues like temperature changes in Arctic seas.

The unique design, called Multi-Environment Dual robot for Underwater Sample Acquisition (MEDUSA), could also facilitate monitoring and maintenance of offshore infrastructure such as subsea pipelines and floating wind turbines.

Meet The High-Tech Urban Farmer Growing Vegetables Inside Hong Kong’s Skyscrapers

Hong Kong, a densely populated city where agriculture space is limited, is almost totally dependent on the outside world for its food supply. More than 90% of the skyscraper-studded city’s food, especially fresh produce like vegetables, is imported, mostly from mainland China. “During the pandemic, we all noticed that the productivity of locally grown vegetables is very low,” says Gordon Tam, cofounder and CEO of vertical farming company Farm66 in Hong Kong. “The social impact was huge.”

Tam estimates that only about 1.5% of vegetables in the city are locally produced. But he believes vertical farms like Farm66, with the help of modern technologies, such as IoT sensors, LED lights and robots, can bolster Hong Kong’s local food production—and export its know-how to other cities. “Vertical farming is a good solution because vegetables can be planted in cities,” says Tam in an interview at the company’s vertical farm in an industrial estate. “We can grow vegetables ourselves so that we don’t have to rely on imports.”

Tam says he started Farm66 in 2013 with his cofounder Billy Lam, who is COO of the company, as a high-tech vertical farming pioneer in Hong Kong. “Our company was the first to use energy-saving LED lighting and wavelength technologies in a farm,” he says. “We found out that different colors on the light spectrum help plants grow in different ways. This was our technological breakthrough.” For example, red LED light will make the stems grow faster, while blue LED light encourages plants to grow larger leaves.

What happens when light hits solar cells? Scientists just observed the first moments

Everything is about to be illuminated.

A team of researchers from Imperial College London and Newcastle University has just observed what happens after light strikes solar cells.

The researchers employed a cutting-edge technique to analyze organic photovoltaic (OPV) materials that harvest the sunlight to generate electricity and peered into the first fractions of a second after light meets the cells, a press release states.

Engineers build LEGO-like artificial intelligence chip

Imagine a more sustainable future, where cellphones, smartwatches, and other wearable devices don’t have to be shelved or discarded for a newer model. Instead, they could be upgraded with the latest sensors and processors that would snap onto a device’s internal chip—like LEGO bricks incorporated into an existing build. Such reconfigurable chipware could keep devices up to date while reducing our electronic waste.

Now MIT engineers have taken a step toward that modular vision with a LEGO-like design for a stackable, reconfigurable artificial intelligence .

The design comprises alternating layers of sensing and processing elements, along with light-emitting diodes (LED) that allow for the chip’s layers to communicate optically. Other modular chip designs employ conventional wiring to relay signals between layers. Such intricate connections are difficult if not impossible to sever and rewire, making such stackable designs not reconfigurable.

Novel 3D batteries for EVs can be charged more than 98% in under 10 minutes

Also from 0 to 80% in 5.2 minutes. When it comes to electric vehicles, the main concern is the range anxiety related to mileage per charge and charging time.


Enovix’s 3D Silicon Lithium-ion battery. Enovix

When it comes to electric vehicles, the main concern is the range anxiet y related to mileage per charge and charging time.

Now a company from the U.S. seems to have a solution for charging time.

With a Twist: New Composite Materials With Highly Tunable Electrical and Physical Properties

Marianne StebbinsWhat does this solve that isn’t already handled by air and water?

5 Replies.

Anne KristoffersenTurn the Bering Strait Crossing into a bridge arcology and the project will handsomely pay for itself in a sustainable way.

The Diomede Bridge ArcoCity could become a vastly important city-state, essentially having a millions-strong settlement there w… See more.

7 Replies.

View 34 more comments.

Jose Ruben Rodriguez Fuentes shared a link.