Toggle light / dark theme

Rutgers professor Jason Barr has proposed adding 1,760-acres of reclaimed land, named New Mannahatta, to the tip of Manhattan to provide housing and combat climate change.

Called New Mannahatta in reference to the indigenous name for the island in New York, the plan would extend Manhattan Island into New York Harbor beyond the Statue of Liberty.

Barr, a professor of economics at Rutgers University, outlined his plan in an opinion piece directed at the city’s mayor Eric Adams, which was recently published in the New York Times.

LG’s solar business panel business joins the company’s smartphone business in the graveyard, with the latter business being canned last April as it could not compete with other smartphone brands in the market. Prior to the smartphone business closing shop, it had recorded 23 consecutive quarters of loss.

The decision was approved by the board of directors on Monday night, LG said.

LG’s solar panel production will start winding down next month, the company said, with the business to officially shut down at the end of June.

Tesla asks for help… SpaceX stacks… Elon Musk pays in Doge. It’s the free edition of Musk Reads #286.

And for our premium members — last week, you learned about Moon Bikes. This week, you will hear from author Jimmy Soni about what Musk’s earliest success reveals about his management style.

“They will be fine” — Elon Musk tweeted in response to a user wondering “How can I feel good about bringing kids into the world given climate change?” The real answer is much more complicated; the next few decades are fraught, and some children are already experiencing the worst of what climate change has to offer. Read more on Inverse.

Space colonization requires us to better understand how Earth sustains us.

In the coming decades, space agencies from around the world will be venturing farther out into space than ever before. This includes returning to the Moon (perhaps to stay this time), exploring Mars, and maybe even establishing human settlements on both. Beyond that, there are even proposals for establishing habitats in space that could accommodate millions. These plans build on decades of planning that go back to the dawn of the Space Age. In some cases, the plans are inspired by proposals made over half a century prior to that. While these grand visions for space exploration and colonization present many challenges, they also inspire innovative solutions. In particular, missions to deep-space require fresh thinking about environmental control and life-support systems (ECLSS) that can provide self-sufficiency in terms of air, water, food, and protection from radiation and the dangers of space. These are essential since missions that take astronauts far from Earth cannot depend upon resupply missions from the surface to Low Earth Orbit (LEO).

Full Story:


Successfully achieving nuclear fusion holds the promise of delivering a limitless, sustainable source of clean energy, but we can only realize this incredible dream if we can master the complex physics taking place inside the reactor.

For decades, scientists have been taking incremental steps towards this goal, but many challenges remain. One of the core obstacles is successfully controlling the unstable and super-heated plasma in the reactor – but a new approach reveals how we can do this.

In a joint effort by EPFL’s Swiss Plasma Center (SPC) and artificial intelligence (AI) research company DeepMind, scientists used a deep reinforcement learning (RL) system to study the nuances of plasma behavior and control inside a fusion tokamak – a donut-shaped device that uses a series of magnetic coils placed around the reactor to control and manipulate the plasma inside it.

Cornell chemists have discovered a class of nonprecious metal derivatives that can catalyze fuel cell reactions about as well as platinum, at a fraction of the cost.

This finding brings closer a future where fuel cells efficiently power cars, generators and even spacecraft with minimal greenhouse gas emissions.

“These less expensive metals will enable wider deployment of hydrogen fuel cells,” said Héctor D. Abruña, the Émile M. Chamot Professor in the Department of Chemistry and Chemical Biology in the College of Arts and Sciences. “They will push us away from and toward .”

Award Helps Move Cost-Effective, Productive, Robust Wave Energy Design a Step Closer to Commercialization and Widespread Use

In 1974, Stephen Salter, a professor at the University of Edinburgh, sent his “ducks” into the Scottish seas, launching the world’s first major wave energy project. But the ocean’s rough heaves and surges proved too much for his house-sized, floating generators. Like the more recent Pelamis’ P-750 model and Aquamarine’s Oysters, they succumbed to the power they were meant to harness.

“We have to ask ourselves,” said Krish Thiagarajan Sharman, the endowed chair in renewable energy at the University of Massachusetts Amherst, “why have we been working on this for so long? Why don’t we have grid-ready, commercial-scale wave energy systems out in the world?”