Toggle light / dark theme

Adding Heat to Electric Vehicle Batteries Helps Them Charge in Just 10 Minutes

Most efforts so far have relied on external heating and cooling systems, but these add a lot of bulk and also tend to use up a considerable amount of energy themselves. The researchers’ innovation, outlined in a recent paper in Nature , was to add an extra component to the batteries: a sheet of nickel foil just a few micrometers thick between the stacked electrodes of each cell.

This ultra-thin sheet is used as a heating element, and when a current is passed through it the cell heats up to 149° Fahrenheit in about a minute. This temperature is maintained through charging, but the cell then quickly cools back to room temperature as soon as the current is switched off.

When they tested their approach, the researchers found that they could charge a 265 watt-hour battery to 70 per cent in 11 minutes. They also showed that heating the battery didn’t seriously affect its lifetime, as it survived 2,000 cycles of charging, which would provide enough energy to drive more than 500,000 miles overall.

Hyderabad Students Convert Discarded Bike Into Low-Cost EV With Wireless Charging

The Indian Electric Vehicle market is set to reach a sales volume of 10.8 lakh units by 2025. However, these vehicles are currently at a high price and are not affordable to consumers in low-income categories.

To bridge this gap, a team of seven students at the KL University, Hyderabad have retrofitted an old and discarded bike into an EV.

“We also added futuristic features including wireless charging and cell balancing, which ensures equalised charging,” says Charan Sai (21), a fourth-year student of Electronics and Electrical Engineering, and the lead of the project.

World’s first commercial sand battery begins energy storage in Finland

Wind and solar power are intermittent, generating power when it’s available rather than when it’s needed, so the green energy transition will require huge amounts of energy storage. This could end up taking many forms, from conventional lithium-based “big battery” installations, to flow batteries, silicon phase-change batteries, molten salt batteries, iron-air batteries, gravity batteries, carbon dioxide expansion batteries, and other more unusual ideas like buoyancy batteries.

Each has its own advantages and disadvantages in terms of efficiency, size, location, installation costs, operating costs, input and output power ratings, longevity and how long it can store the energy for. That’s good, since different solutions will fill different needs – some backing up the power grid during instantaneous demand spikes, others smoothing out the mismatched daily curves between demand and renewable supply, and others still helping to address seasonal supply drops, like when solar drops off through the winter.

Here’s another for the pile, coming out of Finland. Polar Night Energy says it’s just opened its first commercial sand battery at the premises of “new energy” company Vatajankoski, a few hours out of Helsinki.

Reducing noise pollution with acoustic walls and rubberised roads

Sound-diffracting walls and rubberised asphalt ingredients tackle the major environmental concern of noise pollution from traffic.

In cities across the European Union, noise is a significant health hazard along with air pollution. Efforts are under way to reduce a major source of both: traffic.

Noise is the number-two environmental source of health troubles, after air pollution, according to the United Nations World Health Organization.

Tesla’s new vehicle platform will be cheaper and less labor intensive, says Musk

That’s what Musk announced during Tesla’s Q3 2022 earnings call.

The third vehicle platform for Tesla, following the big one supporting the Model S and X and the small one supporting the Model 3 and Y, has received new information from company CEO Elon Musk.

Customers, investors, and Tesla supporters have been anticipating the company’s introduction of a new vehicle that will be less expensive than the current models for some time.


Tesla.

The cost and labor involved in manufacturing Tesla’s new vehicle platform will be significantly reduced. The company added that it will produce more than all of its other existing vehicles put together.

NASA’s Mars rover Curiosity reaches intriguing salty site after treacherous journey

After a treacherous journey, NASA’s Curiosity Mars rover has reached an area that is thought to have formed billions of years ago when the Red Planet’s water disappeared.

This region of Mount Sharp, the Curiosity rover’s Martian stomping ground, is rich in salty minerals that scientists think were left behind when streams and ponds dried up. As such, this region could hold tantalizing clues about how the Martian climate changed from being similar to Earth’s to the frozen, barren desert that Curiosity explores today.

Improving battery-electric-vehicle profitability through reduced structural costs

As sales of battery electric vehicles (BEV) increase, OEMs need to focus on R&D excellence, flexible manufacturing, and value-chain integration to improve profitability.

Even in countries where BEV sales are picking up, many automotive executives are concerned about profitability. Some EV OEMs have already begun investigating changes to their go-to-market models that may increase sales and reduce costs quickly. Over the midterm, however, they will need to apply additional measures to be profitable, and our recent research shows that three levers will be particularly important in this respect:


Most OEMs do not have all the required capabilities, such as the ability to develop software for both batteries and e-drive, to move BEV production completely in-house. Consequently, they often need to form strategic partnerships across the ecosystem, including those for BEV design, manufacturing, and component sourcing. These partnerships will also allow them to share the burden of capex spending until they achieve sufficient scale.

Partnerships can take many forms, such as joint ventures, and OEMs may form links across the value chain, such as those with battery suppliers. These partnerships may have various goals, from securing a supply of high-quality lithium-ion battery cells to codeveloping vehicles to building a supporting charging infrastructure. Managing such partnerships will require close attention and the ability to lead a complex network.

BEV profitability will continue to face headwinds from high e-drive and battery costs, as well as the need for high investments at a time when sales volumes remain challenged. By focusing on additional cost reductions in R&D, manufacturing processes, and value-chain integration, companies may realize profitability and put themselves in a stronger position as the BEV market gains traction.

/* */