Toggle light / dark theme

Over the past decades, engineers have created increasingly advanced and highly performing integrated circuits (ICs). The rising performance of these circuits in turn increased the speed and efficiency of the technology we use every day, including computers, smartphones and other smart devices.

To continue to improve the performance of integrated circuits in the future, engineers will need to create thinner transistors with shorter channels. Down-scaling existing silicon-based devices or creating smaller devices using alternative semiconducting materials that are compatible with existing fabrication processes, however, has proved to be challenging.

Researchers at Purdue University have recently developed new transistors based on indium oxide, a semiconductor that is often used to create touch screens, flatscreen TVs and solar panels. These transistors, introduced in a paper published in Nature Electronics, were fabricated using atomic layer deposition, a process that is often employed by transistor and electronics manufacturers.

We’ve showcased plenty of EV conversions on the channel before, but up until now they’ve mostly been high-end, beautifully refurbished classics. In this episode, Jack heads to France to investigate the entry-level of EV conversion. For €5,000 after government subsidies, a company by the name of Transition One claims it can turn your old banger into a no fuss, no-emissions electric car. Is this the answer to overpriced new cars? Could this be the key to accelerating EV uptake? Check out the episode to find out.

00:00 Welcome to a crusty Fiat!
1:54 Welcome to Transition One.
3:35 One very charismatic founder.
5:30 How does it work?
7:37 The gearbox lives!
8:50 How much??
12:12 Range and specs.
13:39 Who fits it?
14:43 How many orders?
15:35 When can I buy one?
17:12 Final thoughts.

Fully Charged LIVE is BACK! Get your tickets now:
Farnborough — 29th & 30th April, 1st May 2022: https://fullycharged.live/
Amsterdam — 20th, 21st & 22nd May 2022: https://fullycharged.live/eu/
San Diego — 10th & 11th September 2022: https://fullycharged.live/us/

Become a Patreon: https://www.patreon.com/fullychargedshow.

The achievement, published in the peer-reviewed Nature Communication journal today, could see the Morrison government’s so-called hydrogen stretch goal of $2 a kilogram to make the fuel competitive reached as soon as 2025, the Hysata chief executive, Paul Barrett, said.

“We’ve gone from 75% [efficiency] to 95% – it’s really a giant leap for the electrolysis industry,” Barrett said.

Renewable energy from sources such as wind and solar is making big inroads into the power sector, supplying more than a third of eastern Australia’s electricity in the final three months of 2021. However, decarbonising industry and some transport, such as trucking, is likely to be tougher unless fuels such as hydrogen become much cheaper.

While it may be too late for the breakthrough to allow mass adoption for consumer electronics and electric vehicles, Professor Chiang believe it could revolutionise energy storage for large-scale renewable operations.

He has founded a startup, Form Energy, to further develop and commercialise the technology, with the hope of rapidly pushing forward zero carbon energy solutions.

Materials scientists at the UCLA Samueli School of Engineering and colleagues from five other universities around the world have discovered the major reason why perovskite solar cells—which show great promise for improved energy-conversion efficiency—degrade in sunlight, causing their performance to suffer over time. The team successfully demonstrated a simple manufacturing adjustment to fix the cause of the degradation, clearing the biggest hurdle toward the widespread adoption of the thin-film solar cell technology.

A detailing the findings was published today in Nature. The research is led by Yang Yang, a UCLA Samueli professor of materials science and engineering and holder of the Carol and Lawrence E. Tannas, Jr., Endowed Chair. The co-first authors are Shaun Tan and Tianyi Huang, both recent UCLA Samueli Ph.D. graduates whom Yang advised.

Perovskites are a group of materials that have the same atomic arrangement or crystal structure as the mineral calcium titanium oxide. A subgroup of perovskites, , are of great research interest because of their promising application for energy-efficient, .

Bacteria might be the solution to all of our space breathing issues. According to Mashable, scientists may use cyanobacteria to figure out how humans might quickly acquire oxygen in space.

Cyanobacteria convert carbon dioxide into oxygen. Cyanobacteria are found in extremely difficult settings on Earth, thus it is predicted that they would be able to live on Mars.

Some scientists have proposed transporting the bacterium to Mars to test whether it can produce oxygen for future people who could end up there. Experiments have previously demonstrated that cyanobacteria can flourish in a Martian environment.

Abundant fuel cell raw materials and renewables potential could add up to a green hydrogen economy in the Philippines, according to Jose Mari Angelo Abeleda Jr and Richard Espiritu, two professors at the University of the Philippines Diliman. In a paper published in this month’s Energy Policy, they explained the country is a latecomer to the sector and should develop basic and applied knowledge for training and research. The country should also establish stronger links between industry and academia, the report’s authors suggested. “The establishment of the Philippine Energy Research and Policy Institute (Perpi) is a move towards the right direction as it will be instrumental in crafting policies and pushing for activities that will usher for more private-academ[ic] partnerships for the development of fuel cell technology in the Philippines,” the scholars wrote. “However, through enabling legislation, a separate and dedicated Hydrogen Research and Development Center (HRDC) will be pivotal in ensuring that sufficient government and private funding are provided.” The authors reported progress in the production of fuel cell membranes but few developments towards large scale production, transport, and storage facilities. “The consolidation of existing renewable energy sources for hydrogen production can also be explored in order to ensure reliable and sustainable hydrogen fuel supply,” they wrote. “This is because the country will gain more benefit if it focuses more on the application of fuel cell technology on rural electrification via renewa[ble] energy-based distributed power generation, rather than on transportation such as fuel cell vehicles.”

Paris-based energy engineering company Technip Energies and Indian energy business Greenko ZeroC Private have signed a memorandum of understanding (MOU) to explore green hydrogen project development opportunities in the refining, petrochemicals, fertilizer, chemical, and power plant sectors in India. “The MOU aims to facilitate active engagement between the teams of Technip Energies in India and Greenko to step up collaborative opportunities on a build-own-operate (BOO) model – in which Greenko will be the BOO operator and owner of the asset and Technip Energies will support with engineering services, integration and EP/EPC [engineering and procurement/engineering, procurement and constructrion] – for pilot and commercial scale green hydrogen and related projects in India in order to offer economically feasible technology solutions to clients,” the French company wrote today.

BOW ISLAND, AB — Patrick Fabian is quickly picking up a new skill. The seed farmer plans to start using drones…


BOW ISLAND, AB – Patrick Fabian is quickly picking up a new skill.

The seed farmer plans to start using drones to monitor his 1,250 irrigated acres.

“On our farm, it will be mostly for crop surveillance to check the middle of the fields and the things we can’t normally see properly without walking every single square foot of the farm,” Fabian said.