Toggle light / dark theme

TAE’s latest backers include the likes of Google and Chevron

TAE has earned the backing of forward-thinking investors and, so far, has raised a total of $1.2 billion for its commercial fusion development thanks to a track record of exceeding milestones and performance capability. TAE’s mission is to provide a long-term solution to the world’s rapidly increasing electricity demand while ensuring global energy independence and security.

To that end, the company recently closed its Series G-2 financing round, in which it secured $250 million from investors in the energy, technology, and engineering sectors. By avoiding carbon and particulate emissions, TAE’s safe, non-radioactive method minimizes any negative effects on the environment or the effects of climate change.

Across the United States, local wind and solar jobs can fully replace the coal-plant jobs that will be lost as the nation’s power-generation system moves away from fossil fuels in the coming decades, according to a new University of Michigan study.

As of 2019, -fired directly employed nearly 80,000 workers at more than 250 plants in 43 U.S. states. The new U-M study quantifies—for the first time—the technical feasibility and costs of replacing those coal jobs with local wind and solar employment across the country.

The study, published online Aug. 10 in iScience, concludes that local wind and solar jobs can fill the electricity generation and employment gap, even if it’s required that all the new jobs are located within 50 miles of each retiring coal plant.

This cabin in the woods is an otherworldly, all-black, geometric structure built to provide cozy refuge even in harsh Finnish winters. It was designed for a California-based CEO who returned home to Finland with her family to be closer to her ancestral land so she could maintain it. The cabin is aptly named Meteorite based on its unique shape and is set in a clearing surrounded by spruce and birch trees. The cabin is made entirely from cross-laminated timber (CLT) which is a sustainable alternative to other construction materials.

Water scarcity is a major global crisis that already affects every continent. Around 1.2 billion people, or almost one-fifth of the world’s population, lack access to safe drinking water. Desalination is the answer to long-term water security, but it’s also expensive, energy-intensive, and often inaccessible to isolated regions. This is why sustainable off-grid desalination systems powered by renewable energy are essential.

But thanks to the innovative microbial desalination cell (MDC) technology that follows a green, low-energy process with electro-active bacteria to desalinate and sterilize seawater, desalination is becoming a viable low-cost solution for water resources in many areas of the world and is putting an end to water scarcity even in isolated regions.

Now, researchers from the EU-funded W20 project have developed an off-grid innovative solution – the world’s first wave-driven desalination system – called Wave2O. The new system can be deployed quickly, operate completely off-grid, and supply large quantities of fresh water at a competitive cost. The technology uses the power of the ocean waves, a consistent and inexhaustible renewable energy source.

Thinking Huts intends to increase access to education.

Maggie Grout, who was born in a rural mountain village in China, was adopted rather young. “And I think that largely shaped my outlook through the rest of my life — knowing what poverty looks like, and how it impacts the opportunities you’re able to achieve in life. Having that allowed me to see more clearly what my purpose was in life — helping children gain access to education in underprivileged areas in the world,” she tells *IE* in an interview. Huts rely on additive manufacturing technologies to build sustainable schools. Recently, they built the first 3D-printed school in Madagascar.

The sad truth is that our electricity markets currently lack the ability to accept the vast amounts of renewable energy capacity to meet state targets and corporate commitments to procure clean energy. A study by Princeton University found that high-voltage transmission capacity would need to expand by 60% to meet clean energy targets, representing billions of dollars in needed utility upgrades.

However, we can avoid much of this need by siting renewable resources closer to where they are needed – at the distribution level of the grid. In order to do so, we will need to take several key steps to solve major system barriers to expanding renewable energy on the grid. The good news is that with some policy improvements – some major and some minor – renewable energy capacity at the distribution level can meet needs without the long lead time required for larger, utility-scale resources.

Adding a molecule normally used in detergent to an infrared LED could make devices that are easier to manufacture, require less energy and display richer colours than existing ones.

Solar cells and LEDs made from perovskite, a titanium and calcium crystal, have long held promise as being more efficient and easier to produce than commonly used silicon-based devices, but making them both stable and efficient enough to rival silicon’s commercial success has proved difficult.

What gives humans the advantage over our incoming robot masters? Junaid Mubeen at New Scientist Live this October.

The challenge: Just 100 years ago, vegetable oils were practically nonexistent in the human diet. Today, they’re a major part of it: 740 million acres — an area that would cover 90% of India — are dedicated to growing soybeans, palm trees, and other oilseed crops.

While these cooking oils can make food extra tasty, oilseed crop production releases greenhouse gasses, contributes to biodiversity loss, and consumes freshwater that could otherwise be used for drinking or to grow other food.

Cultured oil: Instead of dedicating land and other farming resources to oilseed crops, alt-food startup Zero Acre Farms wants us to start using a cultured oil it produces through fermentation.