Toggle light / dark theme

Lithium-Oxygen Battery May Spell The End Of The Age Of Oil

Circa 2016


A radically new form of lithium-oxygen batteries avoids many of the problems that have prevented the uptake of what is, in theory, the ultimate transportation battery. If the work can be scaled up, it could mark the end of gasoline-powered cars.

The cost, weight, and insufficient lifespan of batteries represents a major obstacle to electric cars replacing internal combustion engines on our roads. There are two paths to address this: One, like Aesop’s tortoise, involves slow incremental improvements in existing lithium-ion batteries, collectively bringing down the cost and extending the range of electric vehicles.

The other path involves a shift to a radically better technology, of which the one with the greatest potential is lithium-oxygen, also known as lithium-air. The announcement in Nature Energy of a very different way of making lithium-oxygen batteries indicates it is not time to write off the hare in this race.

Recycling EV batteries is a problem, but not as you think

The global rush to recycled batteries is excellent news for automakers, however, there isn’t nearly enough scrap to feed them all.

The wave of new factories poses a significant risk for the recycling industry itself, Bloomberg reported on Thursday.

“Nobody is really looking at each other, and they seem to think there will be a lot of scrap and end-of-life batteries,” Hans Eric Melin, the founder of a UK-based consultancy Circular Energy Storage(CES), told Bloomberg.

Machine learning algorithm predicts how to get the most out of electric vehicle batteries

Researchers have developed a machine learning algorithm that could help reduce charging times and prolong battery life in electric vehicles by predicting how different driving patterns affect battery performance, improving safety and reliability.

The researchers, from the University of Cambridge, say their algorithm could help drivers, manufacturers and businesses get the most out of the batteries that power by suggesting routes and driving patterns that minimize battery degradation and charging times.

The team developed a non-invasive way to probe batteries and get a holistic view of battery health. These results were then fed into a machine learning algorithm that can predict how different driving patterns will affect the future health of the battery.

New process converts old PLA plastic into a better 3D-printing resin

Although plant-based polylactic acid (PLA) bioplastic is acclaimed for its biodegradability, it can take quite a long time to degrade if the conditions aren’t quite right. Bearing this fact in mind, Washington State University scientists have devised a way of upcycling it into a 3D-printing resin.

“[PLA] is biodegradable and compostable, but once you look into it, it turns out that it can take up to 100 years for it to decompose in a landfill,” said postdoctoral researcher Yu-Chung Chang, co-corresponding author of the study. “In reality, it still creates a lot of pollution. We want to make sure that when we do start producing PLA on the million-tons scale, we will know how to deal with it.”

To that end, Chang and colleagues developed a process in which an inexpensive chemical known as aminoethanol is used to break down the long chains of molecules that make up PLA. Those chains are rendered into simple monomers, which are the basic building blocks of plastic. The process takes about two days, and can be carried out at mild temperatures.