Toggle light / dark theme

Ray Kurzweil predicted Technological Singularity nearly 20 years ago. Elon Musk could enable a world of economic abundance with real world AI. Robotaxi and Teslabot will transform the world more than car and the first industrial revolution.

Tesla sells Model Ys for about $60000, but it currently costs them about $30000–40000 to make them. A Teslabot is 1/30th of the mass of a Model Y. It will use 1/30th of the batteries. The software is an overall cost of development. If billions of bots are produced then the cost would trend toward the cost of the hardware plus Apple iPhone-like margins including the software (say 40% gross margin). At Model Y cost of $30k then the hardware cost for Teslabot will go to $1000. $2000 with margins and software. A bot can work for 8,000 hours in a year. 8,760 hours in a year. $2000 divided by 8,000 hours is $0.25. If you add 10 cents per hour for electricity then it is $0.35 per hour. Going beyond that is bots can work in the factory and work cheaper than humans. Currently 15,000 workers in Tesla China factory. Replace all of them with $0.35 per hour bots. Reduce labor cost component. If a lot of bots can increase production rates. by 2X then all costs spread over more units. Bot-produced solar and batteries can lower the cost of energy by vastly increasing the supply. Those trends could get us to $500‑1000 per bot costs and lower energy costs. Having virtually unlimited labor costing less than 35 cents per hour will be transformational.

The Technological Singularity is a predicted point when technological growth becomes radically faster.

Real World AI would be general artificial human-level intelligence. Capabilities to provide broad levels of human jobs and tasks.

Teslabots able to perform loading and deliveries to massively boost the supply chain.
Teslabots able to perform manufacturing tasks in the factory.
Teslabots able to use machines built for humans.
Teslabots able to work in factories to make factories self replicating.
Teslabots able to perform mining.

These capabilities would make economic growth massively exponential.

Space is no longer a remote and special place – it is becoming a part of our life and economy.

In parallel with technological advances such as space travel, lunar exploration and next-generation spacecraft, the number of businesses that utilize space has grown. Space has become an indispensable part of our lives.

The Nikkei Virtual Global Forum “The Future of Space 2022” will explore the possibilities of space, from Earth’s orbit to the Moon, Mars and beyond, and the global benefits and impacts on the economy, business and society. We will also discuss such issues as international collaboration, sustainable space utilization and policy responses.

Well that’s a game changer.


Researchers have created a solar-powered device that produces hydrogen fuel directly from moisture in the air.

According to its inventors, the prototype produces hydrogen with greater than 99% purity and can work in air that is as dry as 4% relative humidity. The device would allow hydrogen to be produced without carbon emissions even in regions where water on land is scarce, they say.

Were you unable to attend Transform 2022? Check out all of the summit sessions in our on-demand library now! Watch here.

Editorial Disclosure: The author of this article has a business relationship with James Phare, CEO and founder of Neural Alpha.

What does sustainability actually mean for organizations? Can it be measured, and if yes, how so? Often, these are obvious questions with less-than-obvious answers, even for sustainability and environmental, social and governance (ESG) professionals like James Phare.

Researchers at the U.S. Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL) have made a technological breakthrough and constructed a perovskite solar cell with the dual benefits of being both highly efficient and highly stable.

The work was done in collaboration with scientists from the University of Toledo, the University of Colorado-Boulder, and the University of California-San Diego.

A unique architectural structure enabled the researchers to record a certified stabilized efficiency of 24% under 1-sun illumination, making it the highest reported of its kind. The highly efficient cell also retained 87% of its original efficiency after 2,400 hours of operation at 55 degrees Celsius.

Scalable technology can work in relative humidity of four percent too.

An international collaboration of researchers has successfully demonstrated the production of green hydrogen directly from the air, a press release said.

Solar and wind installations are picking up steam as the world looks toward greener energy sources. Although energy is generated in an emission-free way in these methods, energy storage requires large batteries, which do not fit into the idea of sustainable living.

A relatively new kind of semiconductor, layered atop a mirror-like structure, can mimic the way that leaves move energy from the sun over relatively long distances before using it to fuel chemical reactions. The approach may one day improve the efficiency of solar cells.

“Energy transport is one of the crucial steps for and conversion in solar cells,” said Bin Liu, a postdoctoral researcher in electrical and computer engineering and first author of the study in the journal Optica.

“We created a structure that can support hybrid light-matter mixture states, enabling efficient and exceptionally long-range .”

The popularity of electric vehicles (EVs) as an environmentally friendly alternative to conventional gasoline vehicles has been on the rise. This has led to research efforts directed toward developing high-efficiency EV batteries. But, a major inefficiency in EVs results from inaccurate estimations of the battery charge. The charge state of an EV battery is measured based on the current output of the battery. This provides an estimate of the remaining driving range of the vehicles.

Typically, the currents in EVs can reach hundreds of amperes. However, commercial sensors that can detect such currents cannot measure small changes in the at milliampere levels. This leads to an ambiguity of around 10% in the battery charge estimation. What this means is that the driving range of EVs could be extended by 10%. This, in turn, would reduce inefficient battery usage.

Now, a team of researchers from Japan, led by Professor Mutsuko Hatano from Tokyo Institute of Technology (Tokyo Tech), has now come up with a solution. In their study published in Scientific Reports, the team has reported a diamond quantum sensor-based detection technique that can estimate the battery charge within 1% accuracy while measuring high currents typical of EVs.

Housing the world’s rapidly-growing population will require massive urban expansion and lots of concrete and steel, but these materials have a huge carbon footprint. A shift to building cities out of wood could avoid more than 100 billion tons of CO2 emissions, according to a new study.

Replacing reinforced concrete with timber might sound unwise, but innovations in engineered wood mean it’s now feasible to construct multi-story buildings without traditional materials. So-called “mass timber” is increasingly being used for structural and load-bearing elements in mid-rise developments, which refers to buildings between 4 and 12 stories high.

One of the main selling points of mass timber is that it’s much less carbon-intensive than steel and cement. In theory it’s actually carbon negative, because trees absorb CO2 in the process of producing wood. But question marks have remained over exactly how much more climate-friendly wood-based construction is, and what impact demand for timber could have on the environment.