Toggle light / dark theme

Can water be harvested from the air to help mitigate water scarcity across the globe? This is what a recent study published in Technologies hopes to address as a team of researchers from The Ohio State University have developed a novel device that can provide faster and more efficient methods for harvesting water from the air compared to longstanding devices, also called atmospheric water harvesting (AWH). This study holds the potential to help regions around the world mitigate the need for access to clean drinking water, as approximately 2 billion people suffer from lack of clean drinking water in their respective regions.

“You can survive three minutes without air, three weeks without food, but only three days without water,” said Dr. John LaRocco, who is a research scientist in the Department of Psychiatry and Behavioral Sciences at The Ohio State University and lead author of the study. “But with it, you can begin to solve a lot of problems, like national security, mental health or sanitation, just by improving the accessibility of clean drinking water.”

For the device, the researchers designed a nickel titanium-based dehumidifier with temperature-sensitive materials, resulting in harvesting greater amounts of water at 0.18 milliliters per watts per hour compared to 0.16 milliliters per watts per hour for traditional harvesters after 30 minutes. Additionally, the temperature-sensitive materials help regulate the amount of heat used during the harvesting process, resulting in approximately half the power needed to use the harvester. Finally, the reduced size of the harvester provides mobility to be used anywhere in the world, whereas traditional harvesters tend to be large and require significant amounts of energy to operate.

While wind and solar energy are the two most viable clean alternatives to the dirty energy sources that power most of our society, the energy that can be harvested from ocean waves also has a lot of potential as an infinitely renewable source.

However, the technology is still developing, and a new research tool may play a big part in helping it get there, Interesting Engineering reported.

The new device, the marine and hydrokinetic toolkit, was developed jointly by the National Renewable Energy Laboratory, Pacific Northwest National Laboratory, and Sandia National Laboratories. It offers validation and standardized analysis tools to help researchers figure out whether their wave energy-gathering technologies are going to be viable without forcing them to undergo expensive and difficult real-world testing.

The world has set its sights on hydrogen to find workable and environmentally friendly means of transport.


Sweden unveils the first-ever green-fueled engine with Volvo’s innovative D17, leading the way for sustainable transportation solutions globally.

One of the UK’s largest solar farms, a 55 MW project, is now officially online, providing enough power for over 20,000 homes.

The solar farm, developed by Atrato Onsite Energy, is also the fourth largest in the entire country, marking a major milestone for renewable energy in the UK.

The solar farm, which cost £39.4 million to build, is located in Richmond, North Yorkshire, and it covers an impressive 166 acres – that’s about 93 football fields. With over 93,000 bifacial solar panels, this site is expected to reduce CO2 emissions by 11,000 tonnes annually.

In a bold move towards sustainability in the automotive industry, Alpine has introduced its new V6 hydrogen engine. The engine is a groundbreaking development that merges high-performance engineering with eco-friendly technology. This innovative engine represents a significant leap for the French automotive brand, showcasing its commitment to advancing hydrogen as a viable fuel alternative in the world of motorsport and beyond.

While Japanese automobile company Toyota continues to be leading the hydrogen revolution, other automobile companies are following closely behind. While some have placed all their bets on electric vehicles being the future of sustainable engines, others are looking at ways to continue producing the internal combustion engine. The answer may be found in hydrogen technology whereby traditional internal combustion engines can be adapted to support the alternative fuel source.

Alpine previously introduced a hydrogen powered car in 2022. Now, the newer model is twice as powerful as the last. The car features a 3.5-litre, twin-turbo V6 engine. It produces a power output of 740bhp, and can reach up to 9,000rpm with 770 Nm of torque. The two hydrogen engines are located in the sidepods and behind the cockpit. The model has been in the works for two years and is a testament to Alpine’s continued dedication towards sustainability.

The demand for lithium, essential for powering sustainable technologies, is rising quickly, yet current methods leave up to 75% of the world’s lithium-rich saltwater sources inaccessible.

With some predicting global lithium supply could fall short of demand as early as 2025, the innovative technology – EDTA-aided loose nanofiltration (EALNF) – sets a new standard in lithium processing. The technology uniquely extracts both lithium and magnesium simultaneously, unlike traditional methods that treat magnesium salts as waste, making it smarter, faster and more sustainable.

The work, co-led by Dr Zhikao Li, from the Monash Suzhou Research Institute and the Department of Chemical and Biological Engineering, and Professor Xiwang Zhang from the University of Queensland, promises to meet the surging demand for lithium and paves the way for more sustainable and efficient extraction practices.

A research team led by Professor Bonghoon Kim from DGIST’s Department of Robotics and Mechatronics Engineering has developed a “3D smart energy device” that features both reversible heating and cooling capabilities. Their device was recognized for its excellence and practicality through its selection as the cover article of the international journal Advanced Materials.

The team collaborated with Professor Bongjae Lee from KAIST’s Department of Mechanical Engineering and Professor Heon Lee from Korea University’s Department of Materials Science and Engineering.

Heating and cooling account for approximately 50% of the global energy consumption, contributing significantly to such as global warming and air pollution. In response, solar absorption and radiative cooling devices, which harness the sun and outdoor air as heat and cold sources, are gaining attention as eco-friendly and .

The reason? While sunny regions naturally provide enough light to grow crops, areas with colder winters often need grow lights and greenhouses part of the year. This increases energy consumption, logistical headaches, and ultimately, food costs.

In their paper, Jiao and colleagues argue for a new method that could dramatically revamp farming practices to reduce land use and greenhouse gas emissions.

Dubbed “electro-agriculture,” the approach uses solar panels to trigger a chemical reaction that turns ambient CO2 into an energy source called acetate. Certain mushrooms, yeast, and algae already consume acetate as food. With a slight genetic tweak, we could also engineer other common foods such as grains, tomatoes, or lettuce to consume acetate.

NASA recently evaluated initial flight data and imagery from Pathfinder Technology Demonstrator-4 (PTD-4), confirming proper checkout of the spacecraft’s systems including its on-board electronics as well as the payload’s support systems such as the small onboard camera. Shown above is a test image of Earth taken by the payload camera, shortly after PTD-4 reached orbit. This camera will continue photographing the technology demonstration during the mission.

Payload operations are now underway for the primary objective of the PTD-4 mission – the demonstration of a new power and communications technology for future spacecraft. The payload, a deployable solar array with an integrated antenna called the Lightweight Integrated Solar Array and anTenna, or LISA-T, has initiated deployment of its central boom structure. The boom supports four solar power and communication arrays, also called petals. Releasing the central boom pushes the still-stowed petals nearly three feet (one meter) away from the spacecraft bus. The mission team currently is working through an initial challenge to get LISA-T’s central boom to fully extend before unfolding the petals and beginning its power generation and communication operations.

Small spacecraft on deep space missions require more electrical power than what is currently offered by existing technology. The four-petal solar array of LISA-T is a thin-film solar array that offers lower mass, lower stowed volume, and three times more power per mass and volume allocation than current solar arrays. The in-orbit technology demonstration includes deployment, operation, and environmental survivability of the thin-film solar array.