Toggle light / dark theme

The great state of Wisconsin is about to get enough clean energy to power 200,000 homes, as the Public Service Commission of Wisconsin has approved a new solar farm that will be the most powerful in the state, Electrek reported.

Vista Sands Solar Farm, which will be located on 8,500 acres of private farmland in Portage County that is being leased from its owners, is being developed by Doral Renewables LLC, a Philadelphia-based company.

The project is expected to take around two years to complete. It will cost $1 billion and generate around 500 jobs during construction and 50 permanent positions once the farm is open for business, per the company.

As fringe as the idea of solar radiation modification once was and as generally controversial as it remains, it is gaining some traction. Last spring, the University of Chicago hired David Keith, one of the most visible proponents of solar geoengineering, to lead a new Climate Systems Engineering initiative, committing to at least 10 new faculty hires for the program. The group will study solar geoengineering, as well as other kinds of Earth system modifications aimed at addressing the climate crisis.

With this initiative, the University of Chicago is attempting to position itself as the place for serious scientific consideration of the logistics and implications of Earth system interventions aimed at reversing or counteracting climate change. It is part of a broader university effort to become a global leader in the climate and energy space.

Previously, Keith was at Harvard University, where he helped launch the Solar Geoengineering Research Program. After repeated delays and years of controversy, Harvard recently canceled a small-scale outdoor geoengineering experiment that Keith helped plan. That experiment would have involved launching a high-altitude balloon, releasing fine particles of calcium carbonate into the stratosphere, and then sending the balloon back through the cloud to monitor how those particles disperse and interact within the atmosphere, and with solar radiation.

Urban construction land expansion damages natural ecological patches, changing the relationship between residents and ecological land. This is widespread due to global urbanization. Considering nature and society in urban planning, we have established an evaluation system for urban green space construction to ensure urban development residents’ needs while considering natural resource distribution. This is to alleviate the contradiction of urban land use and realize the city’s sustainable development. Taking the Fengdong New City, Xixian New Area as an example, the study used seven indicators to construct an ecological source evaluation system, four types of factors to identify ecological corridors and ecological nodes using the minimum cumulative resistance model, and a Back Propagation neural network to determine the weight of the evaluation system, constructing an urban green space ecological network. We comprehensively analyzed and retained 11 ecological source areas, identified 18 ecological corridors, and integrated and selected 13 ecological nodes. We found that the area under the influence of ecosystem functions is 12.56 km2, under the influence of ecological demands is 1.40 km2, and after comprehensive consideration is 22.88 km2. Based on the results, this paper concludes that protecting, excavating, and developing various urban greening factors do not conflict with meeting the residents’ ecological needs. With consideration of urban greening factors, cities can achieve green and sustainable development. We also found that the BP neural network objectively calculates and analyzes the evaluation factors, corrects the distribution value of each factor, and ensures the validity and practicability of the weights. The main innovation of this study lies in the quantitative analysis and spatial expression of residents’ demand for ecological land and the positive and negative aspects of disturbance. The research results improve the credibility and scientificity of green space construction so that urban planning can adapt and serve the city and its residents.

The University of Liverpool has reported a significant advancement in engineering biology and clean energy. A team of researchers has developed an innovative light-driven hybrid nanoreactor that merges natural efficiency with cutting-edge synthetic precision to produce hydrogen—a clean and sustainable energy source.

Published in ACS Catalysis, the study demonstrates a pioneering approach to artificial photocatalysis, addressing a critical challenge in using solar energy for fuel production. While nature’s photosynthetic systems have evolved for optimal sunlight utilisation, artificial systems have struggled to achieve comparable performance.

The hybrid nanoreactor is the product of a novel integration of biological and synthetic materials. It combines recombinant α-carboxysome shells—natural microcompartments from bacteria—with a microporous organic semiconductor. These carboxysome shells protect sensitive hydrogenase enzymes, which are highly effective at producing hydrogen but prone to deactivation by oxygen. Encapsulating these enzymes ensures sustained activity and efficiency.

Scientists have found a way to directly convert sunlight into laser beams in space.


In the future, spacecraft could get rid of the limited fuel problem by tapping into the limitless energy of the sun.

Scientists have identified a way to directly convert sunlight into laser beams in space. This approach would make it possible to transmit power over huge distances, from satellites to lunar bases and even to Earth.

The University of Liverpool has created a hybrid nanoreactor that uses sunlight to produce hydrogen efficiently, offering a sustainable and cost-effective alternative to traditional photocatalysts.

The University of Liverpool has announced a major breakthrough in engineering biology and clean energy. Researchers have developed a groundbreaking light-powered hybrid nanoreactor that combines the natural efficiency of biological processes with the precision of synthetic design to produce hydrogen, a clean and renewable energy source.

Detailed in ACS Catalysis, the study introduces an innovative solution to a longstanding challenge in solar energy utilization for fuel production. While nature’s photosynthesis systems excel at harnessing sunlight, artificial systems have historically fallen short. This new approach to artificial photocatalysis represents a significant step forward in bridging that performance gap.

Sadly, we know that microplastics are getting everywhere, including our drinking water – but researchers have developed a new way to tackle the problem: a filter made of a rather unusual combination of material, which is able to remove up to 99.9 percent of tiny plastic fragments from water.

The researchers, led by a team from Wuhan University in China, combined both chitin (derived from squid bone) and cellulose (derived from cotton) for their ‘Ct-Cel’ foam filter. Both materials are found in abundance in nature, cheap to adapt, and sustainable.

They then tested their filter against numerous different types of plastic, finding it did an excellent job with a wide variety of fragment sizes and plastic types – including some of those most commonly seen in microplastic pollution.

The Large Hadron Collider (LHC), the world’s largest and most powerful particle accelerator, is also the largest single machine operating in the world today that uses superconductivity. The proton beams inside the LHC are bent and focused around the accelerator ring using superconducting electromagnets. These electromagnets are built from coils, made of niobium–titanium (Nb–Ti) cables, that have to operate at a temperature colder than that of outer space in order to be superconducting. This allows the current to flow without any resistance or loss of energy. The High-Luminosity LHC (HL-LHC), an upgrade of the LHC, will for the first time feature innovative electrical transfer lines known as the “Superconducting Links”

Recently, CERN’s SM18 magnet test facility witnessed the successful integration of the first series of magnesium diboride superconducting cables into a novel, flexible cryostat. Together with high-temperature superconducting (HTS) magnesium diboride (MgB2) cables, they will form a unique superconducting transfer line to power the HL-LHC inner triplet magnets. The triplets are the focusing magnets that focus the beam, right before collisions, to a diameter as narrow as 5 micrometres.