Toggle light / dark theme

NASA InSight Still Hunting Marsquakes as Power Runs Down (News Audio + Visuals)

In November 2018, NASA InSight landed in the Elysium Planitia region of Mars with the goal of studying the planet’s deep interior for the first time by using seismic signals to learn more about the properties of the planet’s crust, mantle, and core. Join us live at 11 a.m. PT (2 p.m. ET/1800 UTC) on May 17 as agency leadership and mission team members highlight the spacecraft’s science accomplishments, share details on its power situation, and discuss its future.

Speakers:
Lori Glaze, director of NASA’s Planetary Science Division at NASA Headquarters.
Bruce Banerdt, InSight principal investigator, NASA’s Jet Propulsion Laboratory.
Kathya Zamora Garcia, InSight deputy project manager, JPL

Credit: NASA/JPL-Caltech

Mysterious invisible walls may have been discovered in outer space

“Scientists suspect that a ”fifth force” may be at work in space. This force, which they believe is mediated by a hypothetical particle called a symmetron is responsible for creating invisible walls in space.

The walls aren’t necessarily like the walls of a room. Instead, they are more like barriers. And, they could help explain an intriguing part of space that has left astronomers scratching their heads for quite a while.

BGR.


Scientists may have found an explanation for the invisible walls in space that hold galaxies in orbit around larger galaxies.

Astronomers might’ve discovered why Saturn’s moon Titan looks like Earth

Titan looks suspiciously like our own planet when you observe it. However, Saturn’s moon and our own Earth couldn’t be any more different. Where landscapes are made of silicate-based sediments on Earth, many believe Titan’s landscapes are made of solid organic compounds. As such, they should be much more fragile than Earth’s. A new study may have figured out how the landscapes on Titan came to be.

NASA’s future lunar base will be equipped with a novel microgrid

Called the Artemis lunar base, it will include a habitation unit (for up to four astronauts) and separate mining and fuel processing facilities. These facilities would be built far away from the base camp and would serve to produce rocket fuel, water, oxygen, and other materials needed for extended exploration of the lunar surface while decreasing supply needs from Earth.

Get more updates on this story and more with The Blueprint, our daily newsletter: Sign up here for free.

There will also be an electrical grid for the two units which will be connected during emergencies for resiliency and robustness. Sandia’s researchers note that the electrical system controller for the habitation unit will be very similar to the International Space Station (ISS)’s direct current electrical system with some notable differences.

Scientists successfully grow plants in Moon soil

For the first time ever, scientists have successfully grown plants in soil from the Moon.

Researchers from the University of Florida planted seeds from the Arabidopsis plant — commonly known as thale cress — into a few teaspoons worth of lunar soil collected in the late 60s and early 70s during the Apollo 11, 12 and 17 missions.

After about a week of watering and feeding, the seeds grew into and out of the soil, or lunar regolith, according to a paper detailing the experiment published Thursday in the scientific journal “Communications Biology.”

Sophisticated fluid mechanics model: Space–time isogeometric analysis of car and tire aerodynamics

The complex aerodynamics around a moving car and its tires are hard to see, but not for some mechanical engineers.

Specialists in at Rice University and Waseda University in Tokyo have developed their computer methods to the point where it’s possible to accurately model moving cars, right down to the flow around rolling .

The results are there for all to see in a video produced by Takashi Kuraishi, a research associate in the George R. Brown School of Engineering lab of Tayfun Tezduyar, the James F. Barbour Professor of Mechanical Engineering, and a student of alumnus Kenji Takizawa, a professor at Waseda and an adjunct professor at Rice.

A first: Scientists grow plants in soil from the Moon

Scientists have grown plants in soil from the Moon, a first in human history and a milestone in lunar and space exploration.

In a new paper published in the journal Communications Biology, University of Florida researchers showed that plants can successfully sprout and grow in lunar . Their study also investigated how plants respond biologically to the Moon’s soil, also known as , which is radically different from soil found on Earth.

This work is a first step toward one day growing plants for food and oxygen on the Moon or during . More immediately, this research comes as the Artemis Program plans to return humans to the Moon.