Toggle light / dark theme

Saturn’s moon Titan could harbor life, but only a tiny amount, study finds

Despite its uniquely rich inventory of organic molecules, Saturn’s largest moon, Titan, may be able to support only a minuscule amount of biomass, if life exists on the moon, according to a study using bioenergetic modeling.

Titan, Saturn’s largest moon, is a strange, alien world. Covered in rivers and lakes of liquid methane, icy boulders and dunes of soot-like “sand,” its topography has long fascinated scientists and invited speculation on whether lifeforms might lurk beneath the moon’s thick, hazy atmosphere.

An international team of researchers co-led by Antonin Affholder at the U of A Department of Ecology and Evolutionary Biology and Peter Higgins at Harvard University’s Department of Earth and Planetary sciences set out to develop a realistic scenario of what life on Titan might look like if it does exist, where it is most likely to occur and how much of it might be present.

“I Watched Time Slow Down in Orbit”: This ESA Clock Is Revolutionizing the Science of Space-Time Precision

IN A NUTSHELL 🚀 The ACES mission by the European Space Agency aims to redefine time measurement in space with unmatched precision. ⏱️ ACES will test Einstein’s theories of relativity by measuring how time bends, slows, and stretches under cosmic conditions. 🔬 Using advanced atomic clocks like PHARAO and SHM, ACES will explore fundamental constants

Fifteen new giant radio galaxies discovered with ASKAP

Using the Australian Square Kilometer Array Pathfinder (ASKAP), astronomers have discovered 15 new giant radio galaxies with physical sizes exceeding 3 million light years. The finding was reported in a research paper published April 9 on the arXiv preprint server.

The so-called giant radio galaxies (GRGs) have an overall projected linear length exceeding at least 2.3 million light years. They are rare objects grown usually in low-density environments and display jets and lobes of synchrotron-emitting plasma. GRGs are important for studying the formation and the evolution of radio sources.

ASKAP is a 36-dish radio-interferometer operating at 700 to 1,800 MHz. It uses to achieve extremely high survey speed, making it one of the best instruments in the world for mapping the sky at radio wavelengths. Due to its large field of view, high resolution, and good sensitivity to low-surface brightness structures, ASKAP has been essential in the search for new GRGs.

Super-Earths are common outside the solar system, new study shows

An international team including astronomers from the Center for Astrophysics | Harvard & Smithsonian (CfA) has announced the discovery of a planet about twice the size of Earth orbiting its star farther out than Saturn is to the sun.

These results are another example of how planetary systems can be different from our solar system.

“We found a ‘super-Earth’—meaning it’s bigger than our home planet but smaller than Neptune—in a place where only planets thousands or hundreds of times more massive than Earth were found before,” said Weicheng Zang, a CfA Fellow. He is the lead author of a paper describing these results in the latest issue of the journal Science.

“We’ll See Gravity Like Never Before”: NASA’s Wild Quantum Gradiometer Will Map Earth’s Invisible Forces From Orbit

IN A NUTSHELL 🌍 NASA collaborates with private and academic sectors to develop the Quantum Gravity Gradiometer Pathfinder, a revolutionary space-based quantum sensor. ❄️ The gradiometer uses ultra-cold rubidium atoms to measure Earth’s gravitational variations with high precision, free from environmental disturbances. 🔬 Quantum sensors in the QGGPf offer 10 times greater sensitivity and are

BD+05 4868 Ab: A Planet on Its Last Breath

“This is a very tiny object, with very weak gravity, so it easily loses a lot of mass, which then further weakens its gravity, so it loses even more mass,” said Dr. Avi Shporer.


What can a planet that’s shedding its material teach astronomers about planetary formation and evolution? This is what a recently submitted study to The Astrophysical Journal Letters hopes to address as an international team of scientists investigated a unique exoplanet that orbits its host star approximately 20 times closer than Mercury orbits our Sun, resulting in the exoplanet shedding so much material that it’s creating a tail of debris and will eventually disintegrate into nothing.

“The extent of the tail is gargantuan, stretching up to 9 million kilometers long, or roughly half of the planet’s entire orbit,” said Dr. Marc Hon, who is a postdoc in the Kavli Institute for Astrophysics and Space Research at the Massachusetts Institute of Technology (MIT) and lead author of the study.

Exoplanet BD+054868Ab is located approximately 140 light-years from Earth and orbits its star in approximately 30.5 hours. For context, Mercury takes our Sun in 88 days. The orbit of BD+054868Ab is so close, astronomers hypothesize that it’s a molten world slowly shedding its material and they estimate it will be completely gone between 1 million and 2 million years from now. During its long and slow death, BD+054868Ab is shedding so material that it’s leaving a trail of debris in its wake, which initially puzzled astronomers after analyzing data obtained from NASA’s Transiting Exoplanet Survey Satellite (TESS).