Toggle light / dark theme

Flares from magnetized stars can forge planets’ worth of gold

Astronomers have discovered a previously unknown birthplace of some of the universe’s rarest elements: a giant flare unleashed by a supermagnetized star. The astronomers calculated that such flares could be responsible for forging up to 10% of our galaxy’s gold, platinum and other heavy elements.

The discovery also resolves a decades-long mystery concerning a bright flash of light and particles spotted by a space telescope in December 2004. The light came from a magnetar—a type of star wrapped in magnetic fields trillions of times as strong as Earth’s—that had unleashed a giant .

The powerful blast of radiation only lasted a few seconds, but it released more energy than the sun does in 1 million years. While the flare’s origin was quickly identified, a second, smaller signal from the star, peaking 10 minutes later, confounded scientists at the time. For 20 years, that signal went unexplained.

Sun’s explosions echo in Earth’s skies: How the atmosphere synchronizes with solar flare pulsations

Earth’s atmosphere is much more sensitive to ripples of radiation from the sun than scientists previously believed, new research by Queen’s University Belfast has found.

Solar flares, which are sudden and intense bursts of energy from the sun’s magnetic field, happen regularly.

Understanding how they impact the Earth’s atmosphere is important as very powerful flares can cause inaccuracies in GPS systems and, in extreme cases, can cause total radio blackouts, where all signal is lost.

Noto quake 3D model adds dimension to understand earthquake dynamics

On New Year’s Day 2024, a massive 7.5-magnitude earthquake struck the Noto Peninsula in north central Japan, resulting in extensive damage in the region caused by uplift, when the land rises due to shifting tectonic plates. The observed uplift, however, varied significantly, with some areas experiencing as much as a 5-meter rise in the ground surface.

To better understand how the characteristics of the affected fault lines impact dynamics, researchers in Japan used recently developed simulations to make a detailed model of the fault. The findings could help develop models to simulate scenarios of different earthquakes and mitigate disasters in the future.

The results were published in the journal Earth, Planets and Space.

Stellantis + Factorial Breakthrough: Solid-State Batteries Almost Here!

The best solar company in Australia just installed my new solar system.
Check them out here: https://www.resinc.com.au/electricviking.

I use Starlink internet to upload all of my videos, use my referral link here: https://www.starlink.com/residential?referral=RC-392400-91086-9

👇👇 Buy something and support The Electric Viking Store 👇👇
https://shop.theelectricviking.com/

Size guide and other help for the store 👇

The Electric Viking Products Size Guide.

🔔 Subscribe and hit the notification bell! ►

‘Here Is The Letter That Has Destroyed My Universe’ And 4 More Astrophysics Revolutions

On this day, April 25, in 1929, the world learned how astronomer Edwin Hubble had discovered that the universe was much larger than we had believed. On this day in 2025, you can preorder a book and on the 29th learn about this and four other Astrophysics discoveries that changed how we see the universe — and ourselves — in The Story of Astrophysics in Five Revolutions.

By Ersilia Vaudo, translated by Vanessa Di Stefano. If you use this link we get a penny or something.

He had published his seminal paper in the March issue of Astrophysical Journal but on April 25th in Proceedings of the National Academy of Sciences he published the how, and people began to think about what it meant. He had discovered that the collection of gas and dust we call Andromeda was actually another galaxy.

FAST reveals new millisecond pulsar missed by earlier surveys due to signal overlap

Using the Five-hundred-meter Aperture Spherical Radio Telescope (FAST), Chinese astronomers have discovered a new millisecond pulsar. The newfound pulsar, designated PSR J2129-1210O, was missed by previous searches as its spin period is close to the harmonics of the known pulsar PSR J2129+1210A.

The finding was reported in a paper published April 23 on the arXiv pre-print server.

Pulsars are highly magnetized, rotating emitting a beam of electromagnetic radiation. The most rapidly rotating pulsars, with rotation periods below 30 milliseconds, are known as (MSPs).

Physicists test quantum theory with atomic nuclei from a nuclear reaction

Many atomic nuclei have a magnetic field similar to that of Earth. However, directly at the surface of a heavy nucleus such as lead or bismuth, it is trillions of times stronger than Earth’s field and more comparable to that of a neutron star. Whether we understand the behavior of an electron in such strong fields is still an open question.

A research team led by TU Darmstadt at the GSI Helmholtz Center for Heavy Ion Research has now taken an important step toward clarifying this question. Their findings have been published in Nature Physics. The results confirm the .

Hydrogen-like ions, i.e., to which only a is bound, are theoretically particularly easy to describe. In the case of heavy nuclei with a high proton number—bismuth, for example, has 83 positively charged protons in its nucleus—the strong electrical attraction binds the electron close to the nucleus and thus within this extreme . There, the electron aligns its own magnetic field with that of the nucleus like a compass needle.

New Horizons observations lead to first Lyman-alpha map from the galaxy

The NASA New Horizons spacecraft’s extensive observations of Lyman-alpha emissions have resulted in the first-ever map from the galaxy at this important ultraviolet wavelength, providing a new look at the galactic region surrounding our solar system. The findings are described in a new study authored by the SwRI-led New Horizons team.

The newly published research paper detailing the observations and their interpretation, “The Lyman-alpha Sky as Observed by New Horizons at 57 AU,” by R.G. Gladstone and co-authors appears in The Astronomical Journal.

“Understanding the Lyman-alpha background helps shed light on nearby galactic structures and processes,” said SwRI’s Dr. Randy Gladstone, the study’s lead investigator and first author of the publication. “This research suggests that hot interstellar gas bubbles like the one our is embedded within may actually be regions of enhanced hydrogen gas emissions at a wavelength called Lyman alpha.”