Toggle light / dark theme

CWISE J1249 is the first known brown dwarf-like object to leave the Milky Way.

While stars typically follow predictable paths around the Milky Way, a groundbreaking discovery revealed a hypervelocity object, CWISE J124909.08+362116.0, speeding out of the galaxy at nearly 1 million miles per hour. This remarkable find, credited to NASA’s Backyard Worlds: Planet 9 citizen science project, marks the first time an object of such low mass, possibly a brown dwarf or small star, has been observed breaking free from the galaxy’s gravitational pull.

Using data from NASA’s WISE (Wide-field Infrared Survey Explorer) mission, citizen scientists identified the faint, fast-moving object. Initial observations from 2009–2011, followed by confirmations using ground-based telescopes, led to this discovery. The study, now published in the Astrophysical Journal Letters, underscores the power of citizen science in advancing astronomical research.

A theoretical astrophysicist from the University of Kansas may have solved a nearly two-decade-old mystery over the origins of an unusual “zebra” pattern seen in high-frequency radio pulses from the Crab Nebula.

His findings have just been published in Physical Review Letters.

The Crab Nebula features a neutron star at its center that has formed into a 12-mile-wide pulsar pinwheeling electromagnetic radiation across the cosmos.

New findings from basalt samples retrieved by China’s Chang’e-6 mission reveal that volcanic activity on the Moon’s farside dates back between 4.2 and 2.8 billion years.

This research provides key insights into the lunar geological dichotomy and aids in the precision of lunar dating methods.

Lunar Farside’s Volcanic History Revealed.

As energy from the sun reaches Earth, some solar radiation is absorbed by the atmosphere, leading to chemical reactions like the formation of ozone and the breakup of gas molecules. A new approach for modeling these reactions, developed by a team led by scientists at Penn State, may improve our understanding of the atmosphere on early Earth and help in the search for habitable conditions on planets beyond our solar system.

The researchers have reported in the journal JGR Atmospheres that using a statistical method called correlated-k can improve existing photochemical models used to understand conditions on early Earth.

The approach can help scientists better understand the atmospheric composition of early Earth and will play an important role as new observatories come online in the coming decades that can provide new data on exoplanet atmospheres, the scientists said.

Uranus’s upper atmosphere has been cooling for decades—and now scientists have shown why. Observations from Earth have shown Uranus’ upper atmosphere has been cooling for decades, with no clear explanation.

Now, a team led by Imperial College London scientists has determined that unpredictable long-term changes in the —the stream of particles and energy coming from the sun—are behind the drop.

The team predict Uranus’ upper atmosphere should continue to get colder or reverse the trend and become hotter again depending on how the solar wind changes over the coming years.

Over the past few months, I was asked multiple times by Staff of the House Committee on Oversight and Accountability whether I am available to testify before the U.S. Congress on Unidentified Anomalous Phenomena (UAPs). As a result, I cleared my calendar for November 13, 2024 and prepared the following written statement. At the end, I was not called to testify before Congress and so I am posting below my intended statement. The Galileo Project under my leadership is about to release this week unprecedented results from commissioning data of its unique Observatory at Harvard University. Half a million objects were monitored on the sky and their appearance was analyzed by state-of-the-art machine learning algorithms. Are any of them UAPs and if so — what are their flight characteristics? Unfortunately, the congressional hearing chairs chose not to hear about these scientific results, nor about the scientific findings from our ocean expedition to the site of the first reported meteor from interstellar space.

Stay tuned for the first extensive paper on the commissioning data from the first Galileo Project Observatory, to be posted publicly in the coming days. Here is my public statement.

An international team of astronomers has discovered an instance of two galaxies aligned in a way where their gravity acts as a compound lens. The group has written a paper describing the findings and posted it on the arXiv preprint server.