Toggle light / dark theme

Graphene is known as the world’s thinnest material due to its 2-D structure, in which each sheet is only one carbon atom thick, allowing each atom to engage in a chemical reaction from two sides. Graphene flakes can have a very large proportion of edge atoms, all of which have a particular chemical reactivity. In addition, chemically active voids created by missing atoms are a surface defect of graphene sheets. These structural defects and edges play a vital role in carbon chemistry and physics, as they alter the chemical reactivity of graphene. In fact, chemical reactions have repeatedly been shown to be favoured at these defect sites.

Interstellar molecular clouds are predominantly composed of hydrogen in molecular form (H2), but also contain a small percentage of dust particles mostly in the form of carbon nanostructures, called polyaromatic hydrocarbons (PAH). These clouds are often referred to as ‘star nurseries’ as their low temperature and high density allows gravity to locally condense matter in such a way that it initiates H fusion, the nuclear reaction at the heart of each star. Graphene-based materials, prepared from the exfoliation of graphite oxide, are used as a model of interstellar carbon dust as they contain a relatively large amount of , either at their edges or on their surface. These defects are thought to sustain the Eley-Rideal chemical reaction, which recombines two H into one H2 molecule.

The observation of interstellar clouds in inhospitable regions of space, including in the direct proximity of giant stars, poses the question of the origin of the stability of hydrogen in the molecular form (H2). This question stands because the clouds are constantly being washed out by intense radiation, hence cracking the hydrogen molecules into atoms. Astrochemists suggest that the chemical mechanism responsible for the recombination of atomic H into molecular H2 is catalysed by carbon flakes in interstellar clouds. Their theories are challenged by the need for a very efficient surface chemistry scenario to explain the observed equilibrium between dissociation and recombination. They had to introduce highly reactive sites into their models so that the capture of an atomic H nearby occurs without fail.

Read more

Another write up on last week’s news on the Hydrogen metal discovery. Definitely impacting many industries tech, auto, construction/ building materials, etc.


It’s been over 80 years since the idea of metallic hydrogen was first theorized.

It’s not that changing hydrogen into a different state isn’t possible, because it is – by cooling it to −253 degrees Celsius, it can be turned into liquid. The challenge, however, lies in changing hydrogen into a solid metallic state because of the extreme pressure required to do it.

Hypothetically, metallic hydrogen can revolutionize industries like electronics, magnetics and transportation; help reduce the world’s energy problems; and usher in a brand new age of interstellar exploration. Because it can be used as a superconductor at room temperature, it could make electricity distribution more efficient – no more wasted energy caused by resistance in power lines. And since metallic hydrogen is created under extreme pressure, once it is converted back to its original state, all that pressure will be released, making it the most powerful propellant ever produced, one that can make space travel that much faster.

Read more

For nearly 100 years, scientists have dreamed of turning the lightest of all the elements, hydrogen, into a metal.

Now, in a stunning act of modern-day alchemy, scientists at Harvard University have finally succeeded in creating a tiny amount of what is the rarest, and possibly most valuable, material on the planet, they reported in the journal Science.

For metallic hydrogen could theoretically revolutionise technology, enabling the creation of super-fast computers, high-speed levitating trains and ultra-efficient vehicles and dramatically improving almost anything involving electricity.

Read more

In Brief Science fiction often serves as a curiosity catalyst for a lot of technological innovation. One such example is this Alcubierre Warp Drive, that would absolutely revolutionize the capability of humans to traverse the stars.

It’s always a welcome thing to learn that ideas that are commonplace in science fiction have a basis in science fact. Cryogenic freezers, laser guns, robots, silicate implants… and let’s not forget the warp drive! Believe it or not, this concept – alternately known as FTL (Faster-Than-Light) travel, Hyperspace, Lightspeed, etc. – actually has one foot in the world of real science.

In physics, it is what is known as the Alcubierre Warp Drive. On paper, it is a highly speculative, but possibly valid, solution of the Einstein field equations, specifically how space, time and energy interact. In this particular mathematical model of spacetime, there are features that are apparently reminiscent of the fictional “warp drive” or “hyperspace” from notable science fiction franchises, hence the association.

Read more

More on the completion of phase 1 testing of by the Chinese on their Quantum Satellite as they have kicked their second phase that includes hacking.


Five space exploration projects to begin during 13th Five-Year Plan

Micius, the world’s first quantum satellite, has successfully completed four months of in-orbit tests since China launched it on Aug 16, the Chinese Academy of Sciences has announced.

“The overall performance has been much better than we expected, which will allow us to conduct all our planned experiments using the satellite ahead of schedule and even add some extra ones,” Pan Jianwei, chief scientist for the satellite project, said at a ceremony on Wednesday.

Read more

Ever since Jules Verne and before — perhaps as early as the 5th century B.C. — writers, philosophers and scientists have brought fantasies to life about spaceships carrying humans to other planets, solar systems and galaxies.

Of all the potential targets, only the moon thus far has hosted Earthling “boots on the ground.” Next on most wish lists is Mars. NASA’s tentative schedule designates the first manned mission sometime around 2030.

Aside from the formidable task of designing a safe, efficient vehicle to transport people and supplies, such a mission — depending on the positions of the two planets and other logistics — would take in the neighborhood of nine months each way. Not only is that a long trip, but it would also expose the human body to ambient space radiation for close to a year. Can’t this travel time, many have asked, be cut down somehow?

Read more