Toggle light / dark theme

A fireside with Elon Musk at AI Startup School in San Francisco.

Before rockets and robots, Elon Musk was drilling holes through his office floor to borrow internet. In this candid talk, he walks through the early days of Zip2, the Falcon 1 launches that nearly ended SpaceX, and the “miracle” of Tesla surviving 2008.

He shares the thinking that guided him—building from first principles, doing useful things, and the belief that we’re in the middle of an intelligence big bang.

Chapters:

00:00 — Intro.
01:25 — His origin story.
02:00 — Dream to help build the internet.
04:40 — Zip2 and lessons learned.
08:00 — PayPal.
14:30 — Origin of SpaceX
18:30 — Building rockets from first principles.
23:50 — Lessons in leadership.
27:10 — Building up xAI
39:00 — Super intelligence and synthetic data.
39:30 — Multi-planetary future.
43:00 — Nueralink, AI safety and the singularity.

🏗️ Q: What are the potential benefits of off-worlding heavy industry to space?

A: Space-based manufacturing can produce sustainable energy, food, and water for a trillion-dollar space economy, allowing Earth to recover as a garden planet for future generations.

Space-Based Manufacturing.

🧬 Q: How can microgravity in low-Earth orbit advance biotech manufacturing?

A: Enable unique manufacturing of protein crystals, tissues, and novel drugs impossible on Earth, with high-throughput production of exceptional quality organoids for Alzheimer’s and cancer drug testing.

☀️ Q: How can space-based solar power solve Earth’s energy challenges?

The company says that unlike the large amounts of fuel required for a chemical rocket, the relative tiny amounts of the deuterium and helium-3 fuel mix required means “a spacecraft would launch with a fixed supply, sufficient for missions like Pluto in four years, with no mid-flight refuelling needed”. (Repost)


The Sunbird nuclear fusion rocket concept has the potential to more than halve the time to travel to Mars and cut travel time to Pluto to about four years, the UK’s Pulsar Fusion says.

The company says its in-house team has been working on the project for a decade and it is “rapidly advancing toward in-orbit testing, with components of the system’s power supply set for demonstration later this year” and then demonstrated in orbit in 2027. They hope for a production-ready Sunbird in the early 2030s.

The Sunbird concept is for the fusion-powered ‘tugs’ to be permanently based in space, able to dock on to spacecraft and propel them at high speed over vast distances. Pulsar Fusion says it foresees a compact nuclear fusion engine providing both thrust and electrical power for spacecraft, including as much as 2 MW of power on arrival at a destination.

The James Webb Space Telescope (JWST) has unlocked the depths of interstellar space with unprecedented clarity, offering humanity a high-resolution window into the cosmos. Harnessing this newfound capability, an international team of researchers set out to investigate how polycyclic aromatic hydrocarbons (PAHs)—organic molecules and key players in cosmic chemistry—survive the harsh conditions of space and uncover the mechanism behind their resilience.

Watch THIS Next: https://youtu.be/6kcNzmUaTdA

Faster-than-light travel still seems like pure science fiction—but it could soon become a reality. Scientists have finally discovered a new way to travel at speeds ten times faster than light! Other research teams have made amazing breakthroughs in WARP technology, and in practice this could mean that in just 10 or 20 years we could have the first prototypes of spaceships capable of traveling enormous distances in ever shorter times.