Spacecraft powered by electric propulsion could soon be better protected against their own exhaust, thanks to new supercomputer simulations.
Electric propulsion is a more efficient alternative to traditional chemical rockets, and it’s being increasingly used on space missions, starting off with prototypes on NASA’s Deep Space 1 and the European Space Agency’s SMART-1 in 1998 and 2003, respectively, and subsequently finding use on flagship science missions such as NASA’s Dawn and Psyche missions to the asteroid belt. There are even plans to use electric propulsion on NASA’s Lunar Gateway space station.
Convair’s Super-NEXUS—a visionary leap into spaceflight—was no ordinary vehicle. This partially reusable, Single-Stage-to-Orbit (SSTO) behemoth was designed to carry an astounding 2 million pounds of payload, making it a true giant of its time. Imagine a colossal structure that stood 400 feet tall, towering over even the mighty Saturn V, which itself reached a height of 363 feet. With a staggering diameter of 150 feet, the NEXUS would have dwarfed its predecessors in both size and capability.
But sheer size is only part of the story. In its largest proposed variant, the Super-NEXUS would have weighed an almost incomprehensible 48 million pounds when fully fueled—compared to the Saturn V’s comparatively modest 6.5 million pounds. This weight discrepancy highlights the ambitious scale of the project. The NEXUS wasn’t just a bigger rocket; it was an entirely new class of spacecraft, designed to deliver an unprecedented payload of 2 million pounds to low Earth orbit—more than eight times the capacity of the Saturn V.
And the innovation didn’t stop there. Unlike traditional one-and-done rockets, the Super-NEXUS was envisioned as a reusable marvel. It was designed not just to launch and land, but to land vertically on the ocean’s surface after each mission. Once safely aloft, the massive vehicle would be towed back to port by ships, ready to be refurbished and launched again. This ambitious dream, while never realized, pointed toward a future where space travel was as routine as any other form of transportation.
Such a vision was perhaps too far ahead of its time—but the audacity and scope of the Super-NEXUS continue to inspire, underscoring the boundless potential of human ingenuity in the quest to conquer the stars.
The space debris problem won’t solve itself. We’ve been kicking the can down the road for years as we continue launching more rockets and payloads into space.
In the last couple of years, organizations – especially the European Space Agency (ESA) – have begun to address the problem more seriously.
Now they’re asking this question: What will it take to reach zero space debris?
It’s one of the most often asked questions I get, while showing off the Moon to the public. “Can you see the flag the astronauts left there?”
This then leads to a discussion on how far the Moon is, versus the difficulty of seeing a 1.5 by 0.9 meter flag at such a distance. My scope is good, but not that good.
During the US Apollo program, six crewed missions landed on the Moon starting with Apollo 11 in 1969, leaving a like number of flags. Now, China recently announced that one more flag will join the collection in late 2026, when Chang’e 7 heads to the Moon.
NASA, the National Aeronautics and Space Administration, is the United States government agency responsible for the nation’s civilian space program and for aeronautics and aerospace research. Established in 1958 by the National Aeronautics and Space Act, NASA has led the U.S. in space exploration efforts, including the Apollo moon-landing missions, the Skylab space station, and the Space Shuttle program.
America is leading the bold new initiative to take mankind to Mars and beyond. Click to learn about the history behind and importance of space exploration.
A new way of measuring structures deep inside Earth has highlighted numerous previously unknown blobs within our planet’s mantle. These anomalies are surprisingly similar to sunken chunks of Earth’s crust but appear in seemingly impossible places.
We can judge the value of any scientific endeavour based on how much of our knowledge it overturns or transforms. By that metric, the ESA’s Gaia mission is a resounding success.
The spacecraft gave us a precise, 3D map of our Milky Way galaxy and has forced us to abandon old ideas and replace them with compelling new ones.
Currently, we’re marking the end of the Gaia mission, our best effort to understand the Milky Way. Gaia is an astrometry mission that’s built an impressive map of the Milky Way by taking three trillion observations of two billion individual objects in the galaxy, most of them stars, over an 11-year period.