Toggle light / dark theme

Circa 2021


Astrophysicist at Göttingen University discovers new theoretical hyper-fast soliton solutions.

If travel to distant stars within an individual’s lifetime is going to be possible, a means of faster-than-light propulsion will have to be found. To date, even recent research about superluminal (faster-than-light) transport based on Einstein’s theory of general relativity would require vast amounts of hypothetical particles and states of matter that have “exotic” physical properties such as negative energy density. This type of matter either cannot currently be found or cannot be manufactured in viable quantities. In contrast, new research carried out at the University of Göttingen gets around this problem by constructing a new class of hyper-fast ‘solitons’ using sources with only positive energies that can enable travel at any speed. This reignites debate about the possibility of faster-than-light travel based on conventional physics. The research is published in the journal Classical and Quantum Gravity.

The author of the paper, Dr. Erik Lentz, analyzed existing research and discovered gaps in previous ‘warp drive’ studies. Lentz noticed that there existed yet-to-be explored configurations of space-time curvature organized into ‘solitons’ that have the potential to solve the puzzle while being physically viable. A soliton – in this context also informally referred to as a ‘warp bubble’ – is a compact wave that maintains its shape and moves at constant velocity. Lentz derived the Einstein equations for unexplored soliton configurations (where the space-time metric’s shift vector components obey a hyperbolic relation), finding that the altered space-time geometries could be formed in a way that worked even with conventional energy sources. In essence, the new method uses the very structure of space and time arranged in a soliton to provide a solution to faster-than-light travel, which – unlike other research – would only need sources with positive energy densities.

Edwin “Buzz” Aldrin is giving space enthusiasts an opportunity to own a piece of American history.

The NASA legend’s most personal and cherished possessions will be up for auction through July 26.

The ‘Buzz Aldrin: American Icon’ sale, orchestrated by Sotheby’s Auction House, features the coverall jacket Aldrin wore in 1969 during the Apollo 11 mission, the first successful mission to the Moon and back.

Scientists, designers and engineers across the space industry are working tirelessly to form innovative solutions for traveling to, living on and further understanding Mars.


Mars has long occupied our imagination as a site of wonder and possibility in film — from the high-tech invasion portrayed in The War of the Worlds to Andy Weir’s perhaps more accurate depiction The Martian.

Today, reality is closer than ever to the dreams of science fiction. As early as the 2030s, humans will be able to visit Earth’s planetary neighbor in the most ambitious aerospace mission yet.

The key to becoming an interplanetary species? Cutting-edge materials. Thankfully, scientists, designers, and engineers across the space industry are working tirelessly to form innovative solutions for traveling to, living on, and further understanding Mars.

A space elevator, a technology connecting the Earth’s surface to a space station, would allow for the cost-efficient transport of people and materials. However, a very light yet strong material is essential to making such a technology a reality.

The carbon nanotube is a material that is 100 times stronger, yet four times lighter, than steel, with copper-like high electrical conductivity and diamond-like thermal conductivity. However, previous carbon nanotube fibers were not ideal for extensive use, owing to the small contact area with adjacent carbon nanotubes and limited length they possessed.

Figure 1. Schematic of the structural changes of carbon nanotubes at different annealing temperatures. (Image: Korea Institute of Science and Technology)

What seems like a sci-fi movie can be turned into reality if Japan’s technology is to be believed. Humans can travel across different planets on a train in the near future! Yes, you read that right. Japan has laid out plans in a bid to send humans to Mars and the Moon, according to The Weather Channel India.

Japan has made plans to build a glass habitat structure that would copy Earth’s gravity, atmosphere and topography to make us feel like home.

Researchers from Japan’s Kyoto University in collaboration with Kajima Construction are working on this plan that might shake up space travel, the Weather Channel reported. The researchers announced this last week in a press conference, the EurAsian Times reported.

Multiple angles of Booster 7 experiencing an unexpected ignition during Raptor engine testing.

Video and Pictures from the NSF Robots. Edited by Jack (@theJackBeyer).

All content copyright to NSF. Not to be used elsewhere without explicit permission from NSF.

Click “Join” for access to early fast turnaround clips, exclusive discord access with the NSF team, etc — to support the channel.

Rolling Updates and Discussion: https://forum.nasaspaceflight.com/index.php?board=72.

Articles: https://www.nasaspaceflight.com/?s=Starship.