Toggle light / dark theme

The Japanese government is planning to generate some 20 gigawatts of electricity, equivalent to the output of 20 nuclear reactors, through thin and bendable perovskite solar cells in fiscal 2040.

The industry ministry plans to designate next-generation solar cells as the key to expanding renewables…


TOKYO (Kyodo) — The Japanese government is planning to generate some 20 gigawatts of electricity, equivalent to the output of 20 nuclear reactors, through thin and bendable perovskite solar cells in fiscal 2040.

The type of semiconductive nanocrystals known as quantum dots is not only expanding the forefront of pure science but also playing a crucial role in practical applications, including lasers, quantum QLED televisions and displays, solar cells, medical devices, and other electronics.

A new technique for growing these microscopic crystals, recently published in Science, has not only found a new, more efficient way to build a useful type of quantum dot, but also opened up a whole group of novel chemical materials for future researchers’ exploration.

“I am excited to see how researchers across the globe can harness this technique to prepare previously unimaginable nanocrystals,” said first author Justin Ondry, a former postdoctoral researcher in UChicago’s Talapin Lab.

Researchers at Tokyo University of Science have developed a solar cell-based optoelectronic device that mimics human synapses for efficient edge AI processing.


Artificial intelligence (AI) is becoming increasingly useful for the prediction of emergency events such as heart attacks, natural disasters, and pipeline failures. This requires state-of-the-art technologies that can rapidly process data. In this regard, reservoir computing, specially designed for time-series data processing with low power consumption, is a promising option.

It can be implemented in various frameworks, among which physical reservoir computing (PRC) is the most popular. PRC with optoelectronic artificial synapses (junction structures that permit a nerve cell to transmit an electrical or chemical signal to another cell) that mimic human synaptic elements are expected to have unparalleled recognition and processing capabilities akin to the human visual system.

However, PRC based on existing self-powered optoelectronic synaptic devices cannot handle time-series data across multiple timescales, present in signals for monitoring infrastructure, natural environment, and health conditions.

Discovery enables manufacturing of ultrathin solar panels, advanced optoelectronics.

By creating a new way for light and matter to interact, researchers at the University of California, Irvine have enabled the manufacturing of ultrathin silicon solar cells that could help spread the energy-converting technology to a vast range of applications, including thermoelectric clothing and onboard vehicle and device charging.

The development, subject of a paper recently published as the cover story in the journal ACS Nano, hinges on the UC Irvine researchers’ conversion of pure silicon from an indirect to a direct bandgap semiconductor through the way it interacts with light.

Physicist Matthias Kling studies photons and the things science can do with ultrafast pulses of X-rays. These pulses last just attoseconds – a billionth of a billionth of a second, Kling says. He uses them to create slo-mo “movies” of electrons moving through materials like those used in batteries and solar cells. The gained knowledge could reshape fields like materials science, ultrafast and quantum computers, AI, and medical diagnostics, Kling tells host Russ Altman on this episode of Stanford Engineering’s The Future of Everything podcast.

Researchers in Saudi Arabia have developed a solution to overheating solar panels that requires zero electricity. This development can also double as a method for atmospheric water collection, an important practice in dry regions, as relayed by SciTechDaily.

The research, led by King Abdullah University of Science and Technology professor Qiaoqiang Gan, is important because it addresses the problem of overheating solar panels in particularly hot and sunny regions, such as Saudi Arabia.

Researchers discovered that moisture from atmospheric water could serve as a coolant for the overheating panels. “This water can be collected by atmospheric water harvesting technologies,” Gan stated.

Existing perovskite solar cells, which have the problem of not being able to utilize approximately 52% of total solar energy, have been developed by a Korean research team as an innovative technology that maximizes near-infrared light capture performance while greatly improving power conversion efficiency. This greatly increases the possibility of commercializing next-generation solar cells and is expected to contribute to important technological advancements in the global solar cell market.

The research team of Professor Jung-Yong Lee of the School of Electrical Engineering at KAIST (President Kwang-Hyung Lee) and Professor Woojae Kim of the Department of Chemistry at Yonsei University announced on October 31st that they have developed a high-efficiency and high-stability organic-inorganic hybrid solar cell production technology that maximizes near-infrared light capture beyond the existing visible light range.

The research team suggested and advanced a hybrid next-generation device structure with organic photo-semiconductors that complements perovskite materials limited to visible light absorption and expands the absorption range to near-infrared.

Mimicking how plants convert sunlight into energy has long been a dream for scientists aiming to create renewable energy solutions. Artificial photosynthesis is a process that seeks to replicate nature’s method, using sunlight to drive chemical reactions that generate clean energy. However, creating synthetic systems that work as organically as natural photosynthesis has been a significant challenge until now.