Toggle light / dark theme

A new design principle has been identified that could eliminate the use of toxic chemicals in solar cell manufacturing.

The standard manufacturing process of organic cells involves toxic solvents. This environmental concern has hindered the widespread adoption of organic solar cells.

Researchers at Linköping University (LiU) have revealed a new design principle for eco-friendly, high-efficiency organic solar cells.

Researchers have successfully developed a supramolecular fluorophore nanocomposite fabrication technology using nanomaterials and constructed a sustainable solar organic biohydrogen production system.

The research team used the good nanosurface adsorption properties of tannic acid-based metal-polyphenol polymers to control the and optical properties of fluorescent dyes while also identifying the photoexcitation and electron transfer mechanisms. Based on these findings, he implemented a solar-based biohydrogen production system using bacteria with hydrogenase enzymes.

The findings are published in the journal Angewandte Chemie International Edition. The joint research was led by Professor Hyojung Cha at the Department of Hydrogen and Renewable Energy, Kyungpook National University and Professor Chiyoung Park at the Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science & Technology.

Basically I believe that this could be the answer for solar panels having super high output as exciton polariton energy is very powerful.


Self-hybridized exciton–polaritons are shown to enable sub-bandgap absorption and emission in 2D perovskites. The energy absorbed by the perovskites are also found to transfer to few-layer graphene in a heterostructure.

The Japanese government is planning to generate some 20 gigawatts of electricity, equivalent to the output of 20 nuclear reactors, through thin and bendable perovskite solar cells in fiscal 2040.

The industry ministry plans to designate next-generation solar cells as the key to expanding renewables…


TOKYO (Kyodo) — The Japanese government is planning to generate some 20 gigawatts of electricity, equivalent to the output of 20 nuclear reactors, through thin and bendable perovskite solar cells in fiscal 2040.

The type of semiconductive nanocrystals known as quantum dots is not only expanding the forefront of pure science but also playing a crucial role in practical applications, including lasers, quantum QLED televisions and displays, solar cells, medical devices, and other electronics.

A new technique for growing these microscopic crystals, recently published in Science, has not only found a new, more efficient way to build a useful type of quantum dot, but also opened up a whole group of novel chemical materials for future researchers’ exploration.

“I am excited to see how researchers across the globe can harness this technique to prepare previously unimaginable nanocrystals,” said first author Justin Ondry, a former postdoctoral researcher in UChicago’s Talapin Lab.

Researchers at Tokyo University of Science have developed a solar cell-based optoelectronic device that mimics human synapses for efficient edge AI processing.


Artificial intelligence (AI) is becoming increasingly useful for the prediction of emergency events such as heart attacks, natural disasters, and pipeline failures. This requires state-of-the-art technologies that can rapidly process data. In this regard, reservoir computing, specially designed for time-series data processing with low power consumption, is a promising option.

It can be implemented in various frameworks, among which physical reservoir computing (PRC) is the most popular. PRC with optoelectronic artificial synapses (junction structures that permit a nerve cell to transmit an electrical or chemical signal to another cell) that mimic human synaptic elements are expected to have unparalleled recognition and processing capabilities akin to the human visual system.

However, PRC based on existing self-powered optoelectronic synaptic devices cannot handle time-series data across multiple timescales, present in signals for monitoring infrastructure, natural environment, and health conditions.

Discovery enables manufacturing of ultrathin solar panels, advanced optoelectronics.

By creating a new way for light and matter to interact, researchers at the University of California, Irvine have enabled the manufacturing of ultrathin silicon solar cells that could help spread the energy-converting technology to a vast range of applications, including thermoelectric clothing and onboard vehicle and device charging.

The development, subject of a paper recently published as the cover story in the journal ACS Nano, hinges on the UC Irvine researchers’ conversion of pure silicon from an indirect to a direct bandgap semiconductor through the way it interacts with light.