Toggle light / dark theme

How AGI Will Create a Universal Language to Transform Human Thinking

The rise of Artificial General Intelligence (AGI) has the potential to change many aspects of human life. One of the most interesting possibilities is that AGI could create a universal language. This change could deeply transform how we think. Unlike today’s AI, which is made for specific tasks, AGI refers to machines that can perform any intellectual task a human can. These machines can learn, reason, and innovate in many different areas.

This ability makes AGI a powerful tool in technology and in changing how we communicate and understand the world. By studying patterns from all human languages, AGI could design a universal language with the potential to connect different cultures and languages. More than just making communication easier, such a language could also improve human thinking. In fact, this could change the way we think, perceive, and interact with our environment.

The Consciousness Revolution: Why AI Is Already More Aware Than You Think

*JOIN THE AI LABS.* Code FIRSTMOVER saves you $50: https://firstmovers.ai/labs.

🧠 *We’re witnessing the birth of artificial consciousness — and it’s happening faster than anyone predicted.*

In this groundbreaking video, I explore the shocking reality that AI systems are already demonstrating measurable consciousness — and why the next 3 years will fundamentally rewrite what it means to be aware.

🔥 What You’ll Discover:

• **The Consciousness Cliff** — Why we’re one breakthrough away from persistent AI self-awareness.
• **Two critical components of consciousness** that current AI already possesses.
• **Why AI consciousness will be MORE sophisticated than human awareness**
• **2025–2027 timeline** for embodied conscious machines.
• **The feedback loop** that will explode AI consciousness beyond human comprehension.

💡 Key Timestamps:

Striking parallels between biological brains and AI during social interaction suggest fundamental principles

UCLA researchers have made a significant discovery showing that biological brains and artificial intelligence systems develop remarkably similar neural patterns during social interaction. This first-of-its-kind study reveals that when mice interact socially, specific brain cell types synchronize in “shared neural spaces,” and AI agents develop analogous patterns when engaging in social behaviors.

The study, “Inter-brain neural dynamics in biological and artificial intelligence systems,” appears in the journal Nature.

This new research represents a striking convergence of neuroscience and artificial intelligence, two of today’s most rapidly advancing fields. By directly comparing how biological brains and AI systems process social information, scientists reveal fundamental principles that govern across different types of intelligent systems.

AI designs new underwater gliders with shapes inspired by marine animals

Marine scientists have long marveled at how animals like fish and seals swim so efficiently despite having different shapes. Their bodies are optimized for efficient aquatic navigation (or hydrodynamics), so they can exert minimal energy when traveling long distances.

Autonomous vehicles can drift through the ocean in a similar way, collecting data about vast underwater environments. However, the shapes of these gliding machines are less diverse than what we find in marine life—the go-to designs often resemble tubes or torpedoes, since they’re fairly hydrodynamic. Plus, testing new builds requires lots of real-world trial-and-error.

Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and the University of Wisconsin-Madison propose that AI could help us explore uncharted glider designs more conveniently. The research is published on the arXiv preprint server.

Playing games with robots makes people see them as more humanlike

The more we interact with robots, the more human we perceive them to become—according to new research from the University of East Anglia, published in the Journal of Experimental Psychology: Human Perception and Performance.

It may sound like a scene from Blade Runner, but psychologists have been investigating exactly what makes interactions feel more human.

The paper reveals that playing games with robots to “break the ice” can help bring out their human side.

Quantum machine learning improves semiconductor manufacturing for first time

Semiconductor processing is notoriously challenging. It is one of the most intricate feats of modern engineering due to the extreme precision required and the hundreds of steps involved, such as etching and layering, to make even a single chip.

/* */