Toggle light / dark theme

NVIDIA is set to accelerate its development of humanoid robots in the next year, as Team Green is preparing to release dedicated compact computers under the “Jetson Thor” series.

NVIDIA Is Prepared To Capitalize On The “Humanoid Robotics” Hype As The Industry Is Expected To Grow Up To $195 Billion By 2029

When we talk about how AI is going to evolve from hereon, the one discussion in everyone’s mind is automated robots, primarily since AGI has taken over the industry. Now, in a report by the Financial Times, it seems like the upcoming year will likely mark the next phase of the AI hype, where robotics will play a huge role in driving the markets further on. Team Green is rumored to introduce their next-gen “Jetson Thor” computing lineup in the first half of 2025, likely acting as a catalyst in the development of humanoid robots.

What if humans could truly talk to animals? Thanks to groundbreaking AI technology, researchers recently achieved something extraordinary—a 20-minute interaction with a humpback whale named Twain. But what exactly did this ‘conversation’ reveal? And how could it change the way we understand intelligence on Earth—and beyond? The answers may redefine our relationship with nature.

Super-resolution (SR) technology plays a pivotal role in enhancing the quality of images. SR reconstruction aims to generate high-resolution images from low-resolution ones. Traditional methods often result in blurred or distorted images. Advanced techniques such as sparse representation and deep learning-based methods have shown promising results but still face limitations in terms of noise robustness and computational complexity.

In a recent study published in Sensors, researchers from the Changchun Institute of Optics, Fine Mechanics and Physics of the Chinese Academy of Sciences proposed innovative solutions that integrate chaotic mapping into SR image process, significantly enhancing the image quality across various fields.

Researchers innovatively introduced circle chaotic mapping into the dictionary sequence solving process of the K-singular value decomposition (K-SVD) dictionary update . This integration facilitated balanced traversal and simplified the search for global optimal solutions, thereby enhancing the noise robustness of the SR reconstruction.

“I’m really happy to announce the successful accomplishment of the launch of PSLV 60 for the SpaDeX mission,” ISRO Chairman S. Somanath said shortly after the launch in a live webcast. “The rocket has placed the satellites in the right orbit.” If all goes well, the first docking attempt could occur by Jan. 7, he added.

The SpaDeX mission is made up of two satellites, a Target and a Chaser, on a mission to test autonomous docking technology in orbit. But ISRO hopes to do more than just test automatic docking gear.

The mission also includes a secondary payload module with 24 different experiments aboard, including a small robotic arm, which are riding aboard the PSLV rocket’s fourth stage independent of the SpaDeX satellites. Scientists hope to test the arm and other payloads after docking in a payload operations demonstration while also test dual spacecraft control and power transfer between the docked spacecraft.

Stretchable electronics have drawn intensive research attention over the past decade due to their potential impact in various applications, including displays, soft robots, wearable electronics, digital healthcare, and many other areas Considering that intrinsically stretchable technology is relatively new, the predominant approach to realizing current stretchable applications leverages the structure of stretchable interconnects. Therefore, one of the primary challenges in stretchable electronics is designing an optimal stretchable interconnect structure, such as mechanically compliant electrodes, capable of significant stretching without compromising electrical functionality. Numerous techniques for designing stretchable interconnects, including wavy, serpentine, and kirigami structures, have been developed to maximize the stretchability of stretchable electrodes.

Despite achieving high stretchability in structural designs, accurately measuring the strain distribution in real-time during dynamic stretching remains challenging.


To address the current technical limitations in comprehensively understanding the full mechanism of strain behavior and the geometrical effects of serpentine structures without physically breaking the structure, we carefully investigated strain-induced color changes reflecting the complex strain distribution of serpentine-shaped CLCEs. To achieve optimal serpentine CLCEs, specially tailored high-modulus and shape-designed serpentine CLCEs were investigated, incorporating controlled non-uniform strain distribution for serpentine structures. By examining the aspect shape factor in the mechano-optical color changes of the CLCEs, it was visually and quantitatively confirmed that if the CLCE samples were aligned parallel to the direction of stretching, the strain increased, whereas if they were aligned perpendicular to the direction of stretching, the strain decreased. In addition to structural design factors, a sequential study of the modulus effect on the mechano-optical visualization of the serpentine structure revealed that a serpentine CLCE with a high modulus exhibited results that are consistent with conventional serpentine stretching behavior, with the associated structural color changes and photonic wavelength shifts. In a further study on the shape design parameters (angle, width, and length) of serpentine CLCE with a high modulus, the critical factors that determine the complex and varied stretchable serpentine properties were investigated. It was found that the angle (α) shape factor is the most crucial serpentine design parameter that ensures stretchability, whereas the width wordpress is the parameter that diminishes stretchability. Furthermore, to assess the structural color changes and photonic wavelength shifts according to practical stretching mechanisms, a 2 × 2 arrayed multi-interconnected serpentine CLCE structure under multiaxial (uniaxial and biaxial) stretching conditions was investigated. It was confirmed that elongation parallel to the direction of mechanical stretching could induce serpentine stretching characteristics in the arrayed CLCE devices. These experimental results of structural color changes and photonic wavelength shifts, which enhance the reliability of many studies through comparison with strain distributions, are also supported by the FEM. Considering that stretchable CLCEs also enable molecular arrangement changes, and based on the findings of this study, it was confirmed that serpentine CLCEs can optimize serpentine design through optical visualization methods.

Researchers have developed an innovative therapeutic platform by mimicking the intricate structures of viruses using artificial intelligence (AI). Their pioneering research was published in Nature on December 18.

Viruses are uniquely designed to encapsulate genetic material within spherical shells, enabling them to replicate and invade host cells, often causing disease. Inspired by these complex structures, researchers have been exploring artificial proteins modeled after viruses.

These “nanocages” mimic viral behavior, effectively delivering therapeutic genes to target cells. However, existing nanocages face significant challenges: their small size restricts the amount of genetic material they can carry, and their simple designs fall short of replicating the multifunctionality of natural viral proteins.