Toggle light / dark theme

For Industrial Robots, Hacking Risks Are On the Rise

In the future, industrial robots may create jobs, boost productivity and spur higher wages. But one thing seems more certain for now: They’re vulnerable to hackers.

Factories, hospitals and other big robot users often lack sufficient levels of defense against a digital attack, according to cybersecurity experts, robot manufacturers and engineering researchers. The risk levels are rising as more robots morph from being offline and isolated to being internet-connected machines, often working alongside humans.


5G promises to make factories a lot smarter. And that means they’ll be a lot more vulnerable.

Red Cross sounds alarm over use of ‘killer robots’ in future wars

NAIROBI — Countries must agree strict rules on “killer robots” — autonomous weapons which can assassinate without human involvement, a top Red Cross official has said, amid growing ethical concerns over their use in future wars.

Semi-autonomous weapons systems from drones to tanks have for decades been used to eliminate targets in modern day warfare — but they all have human control behind them.

With rapid advancements in artificial intelligence, there are fears among humanitarians over its use to develop machines which can independently make the decision about who to kill.

AI Created in DNA-Based Artificial Neural Networks

Mention artificial intelligence (AI) or artificial neural networks, and images of computers may come to mind. AI-based pattern recognition has a wide variety of real-world uses, such as medical diagnostics, navigation systems, voice-based authentication, image classification, handwriting recognition, speech programs, and text-based processing. However, artificial intelligence is not limited to digital technology and is merging with the realm of biology—synthetic biology and genomics, to be more precise. Pioneering researchers led by Dr. Lulu Qian at the California Institute of Technology (Caltech) have created synthetic biochemical circuits that are able to perform information processing at the molecular level–an artificial neural network consisting of DNA instead of computer hardware and software.

Artificial intelligence is in the early stages of a renaissance period—a rebirth that is largely due to advances in deep learning techniques with artificial neural networks that have contributed to improvements in pattern recognition. Specifically, the resurgence is largely due to a mathematical tool that calculates derivatives called backpropagation (backward propagation)—it enables artificial neural networks to adjust hidden layers of neurons when there are outlier outcomes for more precise results.

Artificial neural networks (ANN) are a type of machine learning method with concepts borrowed from neuroscience. The structure and function of the nervous system and brain were inspiration for artificial neural networks. Instead of biological neurons, ANNs have artificial nodes. Instead of synapses, ANNs have connections that are able to transmit signals between nodes. Like neurons, the nodes of ANNs are able to receive and process data, as well as activate other nodes connected to it.

After the Smartphone: The Race for the Next Big Thing

As the smartphone market matures, startups are racing to predict what’s next, and venture-capital firms are spraying money into fields like virtual reality, smart watches and even implants in the brain. Here are some of the startups attracting investment.


Venture-capital investors are spraying money into fields like virtual reality, driverless cars and even implants in the brain.

Ray Kurzweil: ‘AI is Still on Course to Outpace Human Intelligence’

The Singularity is near(er)! At least, that’s what the famous inventor and futurist Ray Kurzweil argues. If you’ve ever had an interest in artificial intelligence (AI), robotics, or the future in general, you’ve more than likely heard of Kurzweil. Whether it’s through documentaries, his various written works, or the vast number of interviews he’s been involved in these last few decades, he’s always provided a cautiously optimistic analysis of the world of tomorrow.

His latest interview, which was conducted during last year’s RAAD Festival, was no different.

Bees May Understand Zero, a Concept That Took Humans Millennia to Grasp

Brief mention of AI implications…


As a mathematical concept, the idea of zero is relatively new in human society—and indisputably revolutionary. It’s allowed humans to develop algebra, calculus and Cartesian coordinates ; questions about its properties continue to incite mathematical debate today. So it may sound unlikely that bees — complex and community-based insects to be sure, but insects nonetheless — seem to have mastered their own numerical concept of nothingness.

Despite their sesame-seed-sized brains, honey bees have proven themselves the prodigies of the insect world. Researcher has found that they can count up to about four, distinguish abstract patterns, and communicate locations with other bees. Now, Australian scientists have found what may be their most impressive cognitive ability yet: “zero processing,” or the ability to conceptualize nothingness as a numerical value that can be compared with more tangible quantities like one and two.

While seemingly intuitive, the ability to understand zero is actually quite rare across species—and unheard of in invertebrates. In a press release, the authors of a paper published June 8 in the journal Science called species with this ability an “elite club” that consists of species we generally consider quite intelligent, including primates, dolphins and parrots. Even humans haven’t always been in that club: The concept of zero first appeared in India around 458 A.D, and didn’t enter the West until 1200, when Italian mathematician Fibonacci brought it and a host of other Arabic numerals over with him.