Toggle light / dark theme

NASA agrees to work with SpaceX on orbital refueling technology

On Tuesday afternoon, NASA announced 19 new partnerships with 10 US companies to help bring more cutting-edge technologies closer to production use in spaceflight. There were a lot of useful engineering ideas here, such as precision landing systems and robotic plant farms, but perhaps the most intriguing one involved the rocket company SpaceX and two of NASA’s field centers—the Glenn Research Center in Ohio and the Marshall Space Flight Center in Alabama.

“SpaceX will work with Glenn and Marshall to advance technology needed to transfer propellant in orbit, an important step in the development of the company’s Starship space vehicle,” the NASA news release states. This is a significant announcement for reasons both technical and political.

Scientists Create Miniature Sun in Wisconsin

The sun is easy to spot in the sky, and it’s not very far away in astronomical terms. So, scientists have spent a great deal of time studying our local life-giving star. However, the sun is also a nuclear inferno that will eradicate any people and most robots that get too close. To study the star up close, researchers at the University of Wisconsin-Madison built a miniature sun. They call it the Big Red Ball (BRB), and it could help us understand some fundamental solar processes.

Like most main sequence stars, the sun is a giant ball of hydrogen massive enough to sustain a nuclear fusion reaction. The hydrogen fuses into helium, and helium eventually fuses into heavier elements as stars exhaust their fuel. The sun still has plenty of life left, so it’s mostly hydrogen with about one-quarter helium.

The BRB uses helium to create analogous conditions to those on the sun, but without all that pesky nuclear fusion. As experiments have shown, it’s extremely difficult to maintain nuclear fusion on Earth. The BRB is a hollow sphere almost ten feet (three meters) in diameter. The team filled that space with helium gas (which again is a major component of the sun) and ionized it with microwave heating to form a sun-like plasma. Powerful magnets confine the plasma, and an electrical current causes the miniature sun to spin a bit like the real one.

First Fully Automated Indoor Farm Being Built In Ohio

The next time you shop for cherry tomatoes at Whole Foods or another retailer, you may end up buying some grown in an indoor, controlled environment outfitted with the latest robotic technology. Ohio will get the first fully automated indoor farm in the United States. 80 Acres Farms plans to build one in Hamilton, a suburb of Cincinnati, by the end of the year. The farm will have grow centers for greens, such as herbs and kale, and will supply produce to multiple retailers and distributors.

80 Acres Farms plans to construct the fully automated indoor farm in three phases. When it finishes, the farm will be 150,000 square feet of controlled environmental agriculture (CEA). Mike Zelkind, cofounder and chief executive officer of 80 Acres Farms, explains that the company uses “renewable energy, very little water and no pesticides.” The Hamilton farm will produce leafy greens, microgreens, kale and herbs for retailers such as Whole Foods Markets, Jungle Jims, Dorothy Lane Markets, U.S. Foods and others.

New Android Ransomware Uses SMS Spam to Infect Its Victims

A new ransomware family targeting Android devices spreads to other victims by sending text messages containing malicious links to the entire contact list found on already infected targets.

The malware dubbed Android/Filecoder. C (FileCoder) by the ESET research team which discovered it is currently targeting devices running Android 5.1 or later.

“Due to narrow targeting and flaws in both execution of the campaign and implementation of its encryption, the impact of this new ransomware is limited,” ESET’s researchers found.

This AI detects 11 types of emotions from a selfie

The machine learning models that can detect our face and movements are now part of our daily lives with smartphone features like face unlocking and Animoji. However, those AI models can’t predict how we feel by looking at our face. That’s where EmoNet comes in.

Researchers from the University of Colorado and Duke University have developed the neural net that can accurately classify images in 11 emotional categories. To train the model, researchers used 2,187 videos that were clearly classified into 27 distinct emotion categories including anxiety, surprise, and sadness.

Microsoft has a wild hologram that translates HoloLens keynotes into Japanese

What if neither distance nor language mattered? What if technology could help you be anywhere you need to be and speak any language? Using AI technology and holographic experiences this is possible, and it is revolutionary.


Microsoft has created a hologram that will transform someone into a digital speaker of another language. The software giant unveiled the technology during a keynote at the Microsoft Inspire partner conference this morning in Las Vegas. Microsoft recently scanned Julia White, a company executive for Azure, at a Mixed Reality capture studio to transform her into an exact hologram replica.

The digital version appeared onstage to translate the keynote into Japanese. Microsoft has used its Azure AI technologies and neural text-to-speech to make this possible. It works by taking recordings of White’s voice, in order to create a personalized voice signature, to make it sound like she’s speaking Japanese.

Microsoft has shown off holograms of people before, but the translation aspect is a step beyond what has been possible with HoloLens. This looks like it’s just a demonstration for now, and you’d need access to a Mixed Reality capture studio to even start to take advantage of this. Microsoft’s studios are equipped with lighting rigs and high-resolution cameras to capture a fully accurate digital hologram of someone, which isn’t something that can be done easily at home with a smartphone just yet.

ISS receives prototype bacteria-based space mining kit

Stand by to start space mining – not on an asteroid, but aboard the International Space Station (ISS). Delivered to the station by an unmanned Dragon cargo ship on July 27, an experimental mining kit developed by a team led by the University of Edinburgh will use bacteria to study how microorganisms can be used to extract minerals and metals from rocks on asteroids, moons, and planets.

Large dataset enables prediction of repair after CRISPR–Cas9 editing in primary T cells

Understanding of repair outcomes after Cas9-induced DNA cleavage is still limited, especially in primary human cells. We sequence repair outcomes at 1,656 on-target genomic sites in primary human T cells and use these data to train a machine learning model, which we have called CRISPR Repair Outcome (SPROUT). SPROUT accurately predicts the length, probability and sequence of nucleotide insertions and deletions, and will facilitate design of SpCas9 guide RNAs in therapeutically important primary human cells.

America is drowning in garbage. Now robots are being put on duty to help solve the recycling crisis

To tackle this environmental catastrophe, U.S. companies and researchers are developing AI-assisted robotic technology that can work with humans in processing plants and improve quality control. The goal is to have robots do a better job at sorting garbage and reduce the contamination and health hazards human workers face in recycling plants every day. Sorting trash is a dirty and dangerous job. Recycling workers are more than twice as likely as other workers to be injured on the job, according to a report at the University of Illinois School of Public Health. The profession also has high fatality rates.


The U.S. is facing a recycling crisis that is burying cities and towns in tens of millions of tons of garbage a day. The problem began last year when China, the world’s largest recyclable processor, stopped accepting most American scrap plastic and cardboard due to contamination problems, and a glut of plastics overwhelming its own processing facilities. Historically, China recycled the bulk of U.S. waste.

Contamination in the U.S. is high since recyclables are often dumped into one bin instead of multi-streamed or separated from the source. Now China has strict standards for recycling materials it will accept, requiring contamination levels in a plastic bale, for example, contain one-tenth of 1%.

The situation is dire for many local economies as recycling costs skyrocket. It’s forced many cities and some small communities to stop recycling all together. Now more waste is ending up in landfills and incinerators.

/* */