Toggle light / dark theme

Picture this: you’re sitting in a police interrogation room, struggling to describe the face of a criminal to a sketch artist. You pause, wrinkling your brow, trying to remember the distance between his eyes and the shape of his nose.

Suddenly, the detective offers you an easier way: would you like to have your brain scanned instead, so that machines can automatically reconstruct the face in your mind’s eye from reading your brain waves?

Sound fantastical? It’s not. After decades of work, scientists at Caltech may have finally cracked our brain’s facial recognition code. Using brain scans and direct neuron recording from macaque monkeys, the team found specialized “face patches” that respond to specific combinations of facial features.

Read more

Scientists at The University of Manchester have created the world’s first ‘molecular robot’ that is capable of performing basic tasks including building other molecules. The tiny robots, which are a millionth of a millimetre in size, can be programmed to move and build molecular cargo, using a tiny robotic arm.

Each individual robot is capable of manipulating a single molecule and is made up of just 150 carbon, hydrogen, oxygen and nitrogen atoms. To put that size into context, a billion billion of these robots piled on top of each other would still only be the same size as a single grain of salt. The robots operate by carrying out chemical reactions in special solutions which can then be controlled and programmed by scientists to perform the basic tasks.

In the future such robots could be used for medical purposes, advanced manufacturing processes and even building molecular factories and assembly lines. The research will be published in Nature on Thursday 21st September.

Read more

Thankfully, no one’s out there systematically murdering lawyers. But advances in artificial intelligence may diminish their role in the legal system or even, in some cases, replace them altogether. Here’s what we stand to gain—and what we should fear—from these technologies.


How legal representation could come to resemble TurboTax.

Read more

An epidemiological survey has found there were about 400 million patients needing new teeth in China, but the number of qualified dentists was lagging behind demand.

In March this year the US Food and Drug Administration approved the use of a robot system named Yomi designed to assist human surgeons when fitting implants.


Successful procedure raises hopes technology could avoid problems caused by human error and help overcome shortage of qualified dentists.

PUBLISHED : Thursday, 21 September, 2017, 6:30pm.

Summary: Nanodocs? #Swallow #the #doctor? The authors of a recent research study, says soon we will be able to “swallow the surgeon.” Using medical #nanobots to diagnose and treat disease from inside the body. Study authors documented recent advances in nanotechnology tools, such as nanodrillers, microgrippers, and microbullets – and show how #nanodocs have tremendous potential in the areas of precision surgery, detection, detoxification and targeted drug delivery.


Summary: Nanodocs? Swallow the doctor? The authors of a recent research study, say the concept of “swallow the surgeon” – or using medical nanobots to diagnose and treat disease from inside the body – may be closer than we think. Study authors document recent advances in nanotechnology tools, such as nanodrillers, microgrippers, and microbullets – and show how nanodocs have tremendous potential in the areas of precision surgery, detection, detoxification and targeted drug delivery. Cover photo: The old way to swallow the surgeon. Credit: R. Collin Johnson / Attributed to Stanford University.

Imagine that you need to repair a defective heart valve, a major surgery. Instead of ripping your chest cut open, a doctor merely injects you with a syringe full of medical nanorobots, called nanodocs for short. You emerge from the ‘surgery’ unscathed, and your only external wound is the puncture hole from the injection.

According to a recent study published by nanorobotic engineers at the University of California San Diego (UCSD), the concept of ‘swallow the doctor’ may be closer to reality than we think.

The cost of drug discovery and subsequent development is a massive challenge in the pharmaceutical industry. A typical drug can cost upwards of $2.5 billion and a decade or more to identify and test a new drug candidate[1].

These costs have been increasing steadily over the years, and pharmaceutical manufacturers are constantly seeking ways to improve efficiency to save time and money and speed up research progress.

Automation in the lab is one example; tasks that were traditionally carried out by technicians can now be done by machines. Increasingly sophisticated assays to detect new drug candidates have also helped to slash development time. Now a new ally has arrived to aid drug development – artificial intelligence – and a powerful ally it is.

Read more