Toggle light / dark theme

Max Plank AI Researchers Have Developed Bio-Realistic Artificial Neurons That Can Work In A Biological Environment And Can Produce Diverse Spiking Dynamics

The development of neuromorphic electronics depends on the effective mimic of neurons. But artificial neurons aren’t capable of operating in biological environments. Organic artificial neurons that work based on conventional circuit oscillators have been created, which require many elements for their implementation. An organic artificial neuron based on a compact nonlinear electrochemical element has been reported. This artificial neuron is sensitive to the concentration of biological species in its surroundings and can also operate in a liquid. The system offers in-situ operation, spiking behavior, and ion specificity in biologically relevant conditions, including normal physiological and pathological concentration ranges. While variations in ionic and biomolecular concentrations regulate the neuronal excitability, small-amplitude oscillations and noise in the electrolytic medium alter the dynamics of the neuron. A biohybrid interface is created in which an artificial neuron functions synergistically with biological membranes and epithelial cells in real-time.

Neurons are the basic units of the nervous system that are used to transmit and process electrochemical signals. They operate in a liquid electrolytic medium and communicate via gaps between the axon of presynaptic neurons and the dendrite of postsynaptic neurons. For effective brain-inspired computing, neuromorphic computing leverages hardware-based solutions that imitate the behavior of synapses and neurons. Neuron like dynamics can be established with conventional microelectronics by using oscillatory circuit topologies to mimic neuronal behaviors. However, these approaches can mimic only specific aspects of neuronal behavior by integrating many transistors and passive electronic components, resulting in a bulky biomemtic circuit unsuitable for direct in situ biointerfacing. Volatile and nonlinear devices based on spin torque oscillators or memristor can increase the integration density and emulate neuronal dynamics.

GPT-4 Rumors From Silicon Valley

But for two years OpenAI has been super shy about GPT-4—letting out info in dribs and drabs and remaining silent for the most part.

Not anymore.

People have been talking these months. What I’ve heard from several sources: GPT-4 is almost ready and will be released (hopefully) sometime December-February.

AI Researchers from the Netherlands Propose a Machine Learning-based Method to Design New Complex Metamaterials with Useful Properties

Combinatorial problems often arise in puzzles, origami, and metamaterial design. Such problems have rare collections of solutions that generate intricate and distinct boundaries in configuration space. Using standard statistical and numerical techniques, capturing these boundaries is often quite challenging. Is it possible to flatten a 3D origami piece without causing damage? This question is one such combinatorial issue. As each fold needs to be consistent with flattening, such results are difficult to predict simply by glancing at the design. To answer such questions, the UvA Institute of Physics and the research center AMOLF have shown that researchers may more effectively and precisely respond to such queries by using machine learning techniques.

Despite employing severely undersampled training sets, Convolutional Neural Networks (CNNs) can learn to distinguish these boundaries for metamaterials in minute detail. This raises the possibility of complex material design by indicating that the network infers the underlying combinatorial rules from the sparse training set. The research team thinks this will facilitate the development of sophisticated, functional metamaterials with artificial intelligence. The team’s recent study examined the accuracy of forecasting the characteristics of these combinatorial mechanical metamaterials using artificial intelligence. Their work has also been published in the Physical Review Letters publication.

The attributes of artificial materials, which are engineered materials, are governed by their geometrical structure rather than their chemical makeup. Origami is one such metamaterial. The capacity of an origami piece to flatten is governed by how it is folded, i.e., its structure, and not by the sort of paper it is made of. More generally, the clever design enables us to accurately regulate a metamaterial’s bending, buckling, or bulging. This can be used for many different things, from satellite solar panels that unfurl to shock absorbers.

Scientists use magnets to deliver cancer-killing ‘micro-robots’ into the body

The micro-robots consist of a special kind of bacteria.

Scientists have conceived of a new way to deliver cancer-killing compounds, called enterotoxins, to tumors using bionic bacteria that are steered by a magnetic field, according to a report by Inverse.

“Cancer is such a complex disease, it’s hard to combat it with one weapon,” said Simone Schürle-Finke, a micro-roboticist at the Swiss Federal Institute of Technology in Zürich, Switzerland, and one of the authors of the new study.


Wildpixel/iStock.

These bacteria function as “micro-robots” that can hunt down and rally around a specific tumor. They then release their own naturally produced anti-cancer chemicals and shrink the tumor.

Artificial Intelligence is the Magic Tool the World was Waiting For

Artificial Intelligence (AI) is rapidly changing the world. Emerging technologies on a daily basis in AI capabilities have lead to a number of innovations including autonomous vehicles, self-driving flights, robotics, etc. Some of the AI technologies feature predictions on future and accurate decision-making. AI is the best friend to technology leaders who want to make the world a better place with unfolding inventions.

Whether humans agree or not, AI developments are slowly impacting all aspects of the society including the economy. However, some technologies might even bring challenges and risks to the working environment. To keep a track on AI development, good leaders head the AI world to ensure trust, reliability, safety and accuracy.

Intelligent behaviour has long been considered a uniquely human attribute. But when computer science and IT networks started evolving, artificial intelligence and people who stood by them were on the spotlight. AI in today’s world is both developing and under control. Without a transformation here, AI will never fully deliver the problems and dilemmas of business only with data and algorithms. Wise leaders do not only create and capture vital economic values, rather build a more sustainable and legitimate organisation. Leaders in AI sectors have eyes to see AI decisions and ears to hear employees perspective.

Researchers’ study of human-robot interactions is an early step in creating future robot ‘guides’

A new study by Missouri S&T researchers shows how human subjects, walking hand-in-hand with a robot guide, stiffen or relax their arms at different times during the walk. The researchers’ analysis of these movements could aid in the design of smarter, more humanlike robot guides and assistants.

“This work presents the first measurement and analysis of human arm stiffness during overground physical interaction between a robot leader and a human follower,” the Missouri S&T researchers write in a paper recently published in the journal Scientific Reports.

The lead researcher, Dr. Yun Seong Song, assistant professor of mechanical and aerospace engineering at Missouri S&T, describes the findings as “an early step in developing a robot that is humanlike when it physically interacts with a human partner.”

The Naval Fleet of Drones

I’ve funded Ukraine media, the Ukraine army, and now I just funded the Ukraine navy. The navy part is extra interesting because it is “the world’s first naval fleet of drones”. That is pretty futuristic!

As Elon Musk said, “Future wars are all about the drones.”


Small and fast unmanned ships 3 russian vessels were damaged, including the Admiral Makarov, flagship of the russian Black Sea Fleet. This is the first case in history where the attack was carried out exclusively by unmanned vessels.

The result of this daring operation was incredible — russia has lost its undeniable advantage on the water. The killers of Ukrainian civilians — warships armed with missiles — became targets themselves.

Today, Ukraine starts assembling the world’s first Naval Fleet of Drones!

/* */