Toggle light / dark theme

Benchmarks orient AI. They encapsulate ideals and priorities that describe how the AI community should progress. When properly developed and analyzed, they allow the larger community to understand better and influence the direction of AI technology. The AI technology that has evolved the most in recent years is foundation models, highlighted by the advent of language models. A language model is essentially a box that accepts text and generates text. Despite their simplicity, these models may be customized (e.g., prompted or fine-tuned) to a wide range of downstream scenarios when trained on vast amounts of comprehensive data. However, there still needs to be more knowledge on the enormous surface of model capabilities, limits, and threats. They must benchmark language models holistically due to their fast growth, growing importance, and limited comprehension. But what does it mean to evaluate language models from a global perspective?

Language models are general-purpose text interfaces that may be used in various circumstances. And for each scenario, they may have a long list of requirements: models should be accurate, resilient, fair, and efficient, for example. In truth, the relative relevance of various desires is frequently determined by one’s perspective and ideals and the circumstance itself (e.g., inference efficiency might be of greater importance in mobile applications). They think that holistic assessment includes three components:

UC San Diego nanoengineering professor Shyue Ping Ong described M3GNet as “an AlphaFold for materials”, referring to the breakthrough AI algorithm built by Google’s DeepMind that can predict protein structures.

“Similar to proteins, we need to know the structure of a material to predict its properties,” said Professor Ong.

“We truly believe that the M3GNet architecture is a transformative tool that can greatly expand our ability to explore new material chemistries and structures.”

A team of engineers at UC Santa Cruz has developed a new method for remote automation of the growth of cerebral organoids—miniature, three-dimensional models of brain tissue grown from stem cells. Cerebral organoids allow researchers to study and engineer key functions of the human brain with a level of accuracy not possible with other models. This has implications for understanding brain development and the effects of pharmaceutical drugs for treating cancer or other diseases.

In a new study published in the journal Scientific Reports, researchers from the UCSC Braingeneers group detail their automated, internet-connected microfluidics system, called “Autoculture.” The system precisely delivers feeding liquid to individual in order to optimize their growth without the need for human interference with the .

Cerebral organoids require a high level of expertise and consistency to maintain the precise conditions for cell growth over weeks or months. Using an , as demonstrated in this study, can eliminate disturbance to cell culture growth caused by human interference or error, provide more robust results, and allow more scientists access to opportunities to conduct research with human brain models.

https://youtube.com/watch?v=-ZeeuDrknYc&feature=share

Technology — An investigation into the advancements in digital technology unique to the gaming industry. They can either enhance our lives and make the world a better place to live, or we may find ourselves in a dystopian future where we are ruled and controlled by the very technologies we rely on.

End Game — Technology (2021)
Director: J. Michael Long.
Writers: O.H. Krill.
Stars: Paul Jamison, Razor Keeves.
Genre: Documentary.
Country: United States.
Language: English.
Release Date: 2021 (USA)

Synopsis:
The technology we rely on for everyday communication, entertainment and medicine could one day be used against us. With facial recognition, drone surveillance, human chipping, and nano viruses, the possibility is no longer just science-fiction. Could artificial intelligence become the dominant life form?

Reviews:

Borrowing from methods used to produce optical fibers, researchers from EPFL and Imperial College have created fiber-based soft robots with advanced motion control that integrate other functionalities, such as electric and optical sensing and targeted delivery of fluids.

In recent decades, catheter-based surgery has transformed medicine, giving doctors a minimally invasive way to do anything from placing stents and targeting tumors to extracting tissue samples and delivering contrast agents for medical imaging. While today’s catheters are highly engineered robotic devices, in most cases, the task of pushing them through the body to the site of intervention continues to be a manual and time-consuming procedure.

Combining advances in the development of functional fibers with developments in smart robotics, researchers from the Laboratory of Photonic Materials and Fiber Devices in EPFL’s School of Engineering have created multifunctional catheter-shaped soft robots that, when used as catheters, could be remotely guided to their destination or possibly even find their own way through semi-autonomous control. “This is the first time that we can generate soft catheter-like structures at such scalability that can integrate complex functionalities and be steered, potentially, inside the body,” says Fabien Sorin, the study’s principal investigator. Their work was published in the journal Advanced Science.

The West Japan Rail Company, also known as JR West, has unveiled its giant worker robot that can be tasked to carry out jobs that are considered risky for humans, New Atlas reported.

【News Release】 生産性・安全性向上に向けて、株式会社人機一体および日本信号株式会社と共同で、人型重機ロボットと鉄道工事用車両を融合させた多機能鉄道重機を開発しています。

詳しくはこちらをご覧ください。 https://www.westjr.co.jp/press/article/items/220415_01_robot.pdf pic.twitter.com/FBVjIe1xCC — JR西日本ニュース【公式】 (@news_jrwest) April 15, 2022