Menu

Blog

Archive for the ‘quantum physics’ category: Page 844

Sep 28, 2015

Google, NASA sign 7-year deal to test D-Wave quantum computers as artificial brains

Posted by in categories: computing, quantum physics, robotics/AI

The deal with D-Wave Systems will see a steady stream of D-Wave quantum chips used as the foundation of an artificial intelligence lab.

Read more

Sep 27, 2015

Time Travel Could Become Reality Sooner Than You Think

Posted by in categories: particle physics, quantum physics, space, time travel

According to scientists photons can travel through time. They already have simulated directing quantum light particles to the past for the first time in the history. University of Queensland scientists learned that a simulation of two wormhole-travelling photons might interrelate; signifying hopping through time is conceivable at smallest scales. Their study might help to comprehend how time-travel could be conceivable in the quantum realm. PhD student Martin Ringbauer spoke to The Speaker: “For the first, ‘photon one’ would travel through a wormhole into the past and interact with its older version. In the second, ‘photon two’ travels through normal space-time but interacts with a photon that is stuck in a time-travelling loop through a wormhole, known as a closed timelike curve (CTC).”

Tim Ralph, UQ Physics Professor, said: “We used single photons to do this, but the time-travel was simulated by using a second photon to play the part of the past incarnation of the time travelling photon.”

Read more

Sep 23, 2015

Cambridge Physicists Find Wormhole Proof

Posted by in categories: energy, quantum physics, space, time travel

Calculations show that if the wormhole’s throat is orders of magnitude longer then the width of its mouth, it does indeed create Casimir energy at its centre.


Cambridge Physicists Find Wormhole Proof:-Physicists at the University of Cambridge have established a theoretical groundwork for the reality of wormholes, which are pipes that join two different points in space-time. If a part of information or physical object could pass through the wormhole, it might open the door to time travel or immediate communication through huge distances. “But there’s a problem: Einstein’s wormholes are extremely unsteady, and they don’t stay open long enough for something to pass over.” In 1988, physicists reached the deduction that a type of negative energy called Casimir energy might keep wormholes open.

The hypothetical solution established at Cambridge has to do with the properties of quantum energy, which conveys that even vacuums are teaming by means of waves of energy. If you visualize two metal plates in a vacuum, some waves of energy would be excessively big enogh to fit between the plates, meaning that the space-time among the plates would have negative energy. “Under the right circumstances, could the tube-like shape of the wormhole itself generate Casimir energy? Calculations show that if the wormhole’s throat is orders of magnitude longer then the width of its mouth, it does indeed create Casimir energy at its centre.”

Read more

Sep 23, 2015

What are Quantum Dots?

Posted by in categories: media & arts, quantum physics

NIBIB’s 60 Seconds of Science explains how quantum dots work and why they glow.

Music by longzijun ‘Chillvolution.’

For NIBIB’s Copyright Policy: http://www.nibib.nih.gov/policies#copyright

Sep 23, 2015

Scientists shatter distance record for teleporting quantum data

Posted by in categories: computing, encryption, internet, quantum physics

Quantum teleportation, the act of reconstructing quantum data somewhere else, is impressive just by itself. However, scientists at the US’ National Institute of Standards and Technology have managed to one-up that feat. They’ve broken the distance record for quantum teleportation by transferring the information from one photon to another across 63 miles of optical fiber. That may not sound like much, but it’s an achievement just to beam that data in the first place — 99 percent of photons would never make the complete trip. It was only possible thanks to newer detectors that could pick up the faint signal of the lone light particle.

You’d clearly need to send much more information before this teleportation becomes practical, but the achievement does open the door to many possibilities in quantum computing. You could use unbreakable quantum encryption at inter-city distances, for instance. The biggest challenge may simply be to extend the range to the point where quantum data transfers work on the scale of the internet, where there are occasionally thousands of miles between connections.

[Image credit: Getty Images/iStockphoto].

Read more

Sep 22, 2015

Physicists Discovered New State of Matter

Posted by in categories: materials, particle physics, quantum physics

I remember the time when states of matter were pretty simple: Solid, liquid and gas. Then came plasma state, supercritical fluid, Bose –Einstein condensate and more. Now this list of states of matter has grown by one more, with the surprising discovery of a new state dubbed “dropletons” that shows some similarity to liquids but occur under very unlike circumstances.

The discovery of new state of matter occurred when a team of scientists at the University of Colorado Joint Institute for Lab Astrophysics were concentrating laser light on gallium arsenide (GaAs) to generate excitons.

Excitons are made when a photon strikes a material, mostly a semiconductor. If an electron is knocked loose, or excited, it leaves what is labelled as “electron hole” behind. If the forces of other charges at very close distance keep the electron close enough to the hole in order to feel an attraction, a certain state forms called as an Exciton. Excitons are also called quasiparticles because the holes and electrons act together as if they were like a single particle.

Read more

Sep 22, 2015

Shades of ‘Star Trek’? Quantum Teleportation Sets Distance Record

Posted by in categories: encryption, internet, quantum physics

You’ve gotta love Star Trek, but there is absolutely NO WAY I’d ever set foot in a real teleportation device! (if one ever really got made, of course) Call me crazy, but I’m kinda partial to keeping my molecular cohesion as intact as possible, which kinda rules out having it ripped apart and remade on the other side.


A record-breaking distance has been achieved in the bizarre world of quantum teleportation, scientists say.

The scientists teleported photons (packets of light) across a spool of fiber optics 63 miles (102 kilometers) long, four times farther than the previous record. This research could one day lead to a “quantum Internet” that offers next-generation encryption, the scientists said.

Continue reading “Shades of ‘Star Trek’? Quantum Teleportation Sets Distance Record” »

Sep 22, 2015

Your Brain Isn’t a Computer. It’s a Quantum Field.

Posted by in categories: computing, neuroscience, quantum physics

For centuries, religious texts have explored the idea that reality breaks down once we get past our surface perceptions of it; and yet, it is through these ambiguities that we understand more about ourselves and our world. In the Old Testament, the embattled Job pleads with God for an explanation as to why he has endured so much suffering. God then quizzically replies, “Where were you when I laid the foundations of the earth?” (Job 38:4). The question seems nonsensical — why would God ask a person in his creation where he was when God himself created the world? But this paradox is little different from the one in Einstein’s famous challenge to Heisenberg’s “Uncertainty Principle”: “God does not play dice with the universe.” As Stephen Hawking counters, “Even God is bound by the uncertainty principle” because if all outcomes were deterministic then God would not be God. His being the universe’s “inveterate gambler” is the unpredictable certainty that creates him.

The mind then, according to quantum cognition, “gambles” with our “uncertain” reason, feelings, and biases to produce competing thoughts, ideas, and opinions. Then we synthesize those competing options to relate to our relatively “certain” realities. By examining our minds at a quantum level, we change them, and by changing them, we change the reality that shapes them.

Read more

Sep 20, 2015

The dimensional aspect of existence is associated with the dimensions of space and time.

Posted by in categories: cosmology, evolution, information science, materials, neuroscience, particle physics, quantum physics, singularity, space

The dimensionless aspect, since it has no dimensions, is outside of space and time. This is the key aspect to existence: an aspect outside of space and time perpetually interacting dialectically with an aspect inside space and time. All of the weird and wonderful phenomena of the universe are the products of this ultimate dichotomy.

http://youtu.be/MbRda_sCgkQ

Does this sound crazy? Then consider the evidence provided by black holes.

The R = 0 Universe.

Continue reading “The dimensional aspect of existence is associated with the dimensions of space and time.” »

Sep 17, 2015

Single photon decision-maker solves multi-armed bandit problem

Posted by in categories: computing, information science, particle physics, quantum physics

https://en.wikipedia.org/wiki/Multi-armed_bandit

In probability theory, the multi-armed bandit problem (sometimes called the K- or N-armed bandit problem) is a problem in which a gambler at a row of slot machines (sometimes known as “one-armed bandits”) has to decide which machines to play, how many times to play each machine and in which order to play them. When played, each machine provides a random reward from a distribution specific to that machine. The objective of the gambler is to maximize the sum of rewards earned through a sequence of lever pulls.


(Phys.org)—A combined team of researchers from France and Japan has created a decision-making device that is based on basic properties of quantum mechanics. In their paper published in Scientific Reports (and uploaded to the arXiv preprint server), the team describes the idea behind their device and how it works.

Continue reading “Single photon decision-maker solves multi-armed bandit problem” »