Toggle light / dark theme

Excellent breakthrough for technology’s future.


Example of diamond crystallites of different shapes, obtained with the help of the technology, worked out in the Lomonosov Moscow State University. There are electron microscopy images of diamond films’ fragments after their oxidation in the air. The material left after the oxidation is represented by needle-like diamond monocrystals of pyramid shape. Credit: Alexander Obraztsov.

Physicists from the Lomonosov Moscow State University have obtained micrometer-sized diamond crystals in the form of a regular pyramid. In cooperation with co-workers from other Russian and foreign research centers, they have also studied the luminescence and electron emission properties of these diamond crystals. The research results have been published in a series of articles in journals including Scientific Reports.

The researchers have described structural peculiarities of micrometer-sized diamond crystals in needle- and thread-like shapes, and their interrelation with luminescence features and field electron emission efficiency. The luminescence properties of such thread-like diamond crystals could be useful in different types of sensors, quantum optical devices, and also for quantum computing.

Read more

More believers; loving it!


Video by: Jan-Henrik Kulberg

As we continue to conduct more of our transactions online, consumers, companies and governments put their faith in encryption to protect their private and sensitive data. Once quantum computing becomes a reality, our current encryption methods will quickly become obsolete as quantum computers will be able to easily crack them.

With companies and governments investing heavily in quantum computing, it seems that a fully functioning quantum computer will become a reality in the not too distant future. A machine like that would have no problem cracking the encryption methods used across the Internet today.

Quantum computers will make today’s internet insecure. Therefore, we should consider replacing the current infrastructure now according to Dr. Vadim Makarov. He heads the Quantum Hacking Lab at the Institute for Quantum Computing at the University of Waterloo in Canada.

If you thought 2016 was an impressive year for quantum; just wait to see what we have in store you in 2017! Google’s new QC device is coming, AI, the efforts on the Web, etc. Yes, indeed 2017 is going to be a fun and interesting year for QC.


This year has been rollercoaster crash for many with numerous tragedies and crises occurring all over the world, but it doesn’t mean that everything was grim in 2016.

Join IBTimes UK as we take a closer look at the many new developments across various fields of technological research, each with the potential to revolutionise human life for the better.

Artificial intelligence Artificial intelligence continues to be a key field of research into developing computers that can think like the human mind iStock.

Read more

Now that the EmDrive has made its way into the peer-reviewed literature, it falls in range of Tau Zero’s network of scientist reviewers. Marc Millis, former head of NASA’s Breakthrough Propulsion Physics project and founding architect of the Tau Zero Foundation, has spent the last two months reviewing the relevant papers. Although he is the primary author of what follows, he has enlisted the help of scientists with expertise in experimental issues, all of whom also contributed to BPP, and all of whom remain active in experimental work. The revisions and insertions of George Hathaway (Hathaway Consulting), Martin Tajmar (Dresden University), Eric Davis (EarthTech) and Jordan Maclay (Quantum Fields, LLC) have been discussed through frequent email exchanges as the final text began to emerge. Next week I’ll also be presenting a supplemental report from George Hathaway. So is EmDrive new physics or the result of experimental error? The answer turns out to be surprisingly complex.

By marc millis, george hathaway, martin tajmar, eric davis, & jordan maclay

It’s time to weigh in about the controversial EmDrive. I say, controversial, because of its profound implications if genuine, plus the lack of enough information with which to determine if it is genuine. A peer-reviewed article about experimental tests of an EmDrive was just published in the AIAA Journal of Propulsion and Power by Harold (Sonny) White and colleagues: White, H., March, P., Lawrence, J., Vera, J., Sylvester, A., Brady, D., & Bailey, P. (2016), “Measurement of Impulsive Thrust from a Closed Radio-Frequency Cavity in Vacuum,” Journal of Propulsion and Power, (print version pending, online version here.

Read more

The 2015 Planck data release tightened the region of the allowed inflationary models. Inflationary models with convex potentials have now been ruled out since they produce a large tensor to scalar ratio. Meanwhile the same data offers interesting hints on possible deviations from the standard picture of CMB perturbations. Here we revisit the predictions of the theory of the origin of the universe from the landscape multiverse for the case of exponential inflation, for two reasons: firstly to check the status of the anomalies associated with this theory, in the light of the recent Planck data; secondly, to search for a counterexample whereby new physics modifications may bring convex inflationary potentials, thought to have been ruled out, back into the region of potentials allowed by data. Using the exponential inflation as an example of convex potentials, we find that the answer to both tests is positive: modifications to the perturbation spectrum and to the Newtonian potential of the universe originating from the quantum entanglement, bring the exponential potential, back within the allowed region of current data; and, the series of anomalies previously predicted in this theory, is still in good agreement with current data. Hence our finding for this convex potential comes at the price of allowing for additional thermal relic particles, equivalently dark radiation, in the early universe.

Read this paper on arXiv…

E. Valentino and L. Mersini-Houghton Wed, 28 Dec 16 26/46.

Read more

Creating tunable terahertz radiation.


Indium arsenide quantum dots in gallium arsenide wafers offer wider pump-wavelength range, significantly higher thermal tolerance, and higher conversion efficiency than typical terahertz radiation sources.

The terahertz (THz) range of electromagnetic waves (0.1–10THz)—which lies between the microwave and optical regions—is of great interest. This is mainly because this band of the electromagnetic spectrum includes the frequencies of rotational and vibrational spectra of complex (e.g., biological) molecules. Most dielectric materials are transparent in the THz region, and THz waves are already used in many biomedical applications (e.g., for the detection of dangerous and illicit substances, as well as for the diagnosis and treatment of diseases). Photoconductive antennas are the most-developed room-temperature sources of THz radiation. However, ultrafast low-temperature-grown gallium arsenide (GaAs)—which is typically used as a substrate for such antennas—suffers (because of its large band gap) from low thermal efficiency, low carrier mobility, and a pump limit at a wavelength of about 850nm.

Read more

Since their development in 1960, lasers have become an indispensable tool supporting our modern society, finding use in fields such as medicine, information, and industry. Thanks to their compact size and energy efficiency, semiconductor lasers are now one of the most important classes of laser, making possible a diverse range of applications. However, the threshold current of a typical semiconductor laser—the minimum electrical current required to induce lasing—increases with temperature. This is one of a number of disadvantages that can be overcome by using quantum dot lasers. Professor Yasuhiko Arakawa of the Institute of Industrial Science at the University of Tokyo has been researching quantum dot lasers for about 35 years, from their conception to commercialization.

An electron trapped in a microscopic box

Sunlight is composed of light of various colors. The property that determines the color of light is its wavelength, or in other words, the distance between two successive wave peaks or troughs. The location of the peaks and troughs in the waveform is known as its phase. As a laser emits light waves in a uniform phase at the same wavelength, the light can be transmitted as a beam over long distances at high intensity.

Read more